Math, asked by mahesh030502, 10 months ago

In a triangle ABD, C is the midpoint of BD. If AB=10, AD=12, AC=9, find the value of BD?

Answers

Answered by FelisFelis
0

BD = 2√41 = 12.8 cm

Step-by-step explanation:

Consider the provided information.

Let the length of side BD is 2x

According to herons formula, the area of Δ ABD is:

s=\frac{a+b+c}{2}

A=\sqrt{s(s-a)(s-b)(s-c)}

Where a, b and c are the sides.

Substitute a=10 b=12 and c=2x

s=\frac{10+12+2x}{2}=11+x

A=\sqrt{(11+x)(11+x-10)(11+x-12)(11+x-2x)}

A=\sqrt{(11+x)(1+x)(x-1)(11-x)}

A=\sqrt{(121-x^2)(1-x^2)}

It is given that AC is median

Area of ΔABC =(1/2) Area of Δ ABD

Similarly

Area of ΔABC:

s=\frac{10+9+x}{2}=\frac{19+x}{2}

A=\sqrt{\frac{19+x}{2}(\frac{19+x}{2}-10)(\frac{19+x}{2}-9)(\frac{19+x}{2}-x)}=\frac{1}{2}\sqrt{(121-x^2)(1-x^2)}

A=\sqrt{\frac{(361-x^2)(x^2-1)}{16}}=\frac{1}{2}\sqrt{(121-x^2)(1-x^2)}

\frac{(361-x^2)(x^2-1)}{16}=\frac{1}{4}\sqrt{(121-x^2)(1-x^2)}

361-x^2=4(121-x^2)

x^2=41

x=\sqrt{41}

2x=2\sqrt{41}

Hence, BD = 2√41 = 12.8 cm

#Learn more

Heron'S formula's formula

https://brainly.in/question/2708763

Similar questions