Math, asked by nisikant54, 10 months ago

In a triangle PQR, vertices of P(3,5) and Q(8,4) and centroid at (5,6). Then find the co-ordinate of R.​

Answers

Answered by BrainlyConqueror0901
27

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Coordinate\:of\:R=(4,9)}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies Coordinate \: of \: P = (3,5) \\  \\ \tt:  \implies Coordinate \: of \: Q= (8,4) \\  \\ \tt:  \implies Centroid \: of \:triangle = (5,6) \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Coordinate \: of \: R = ?

• According to given question :

 \bold{As \: we \: know \: that : } \\   \text{Centroid \: formula--} \\ \\   \tt:  \implies x =  \frac{ x_{1} +  x_{2} +  x_{3} }{3}  \\  \\  \tt:  \implies 5 =  \frac{3 + 8  + x_{3}}{3}  \\  \\  \tt:  \implies 5 \times 3 = 11 +  x_{3}  \\  \\  \tt:  \implies  x_{3} = 15 - 11 \\  \\  \green{\tt:  \implies  x_{3} =4} \\  \\  \bold{For \: y \: ordinate} \\ \tt:  \implies y =  \frac{ y_{1} +  y_{2} +  y_{3} }{3}  \\  \\  \tt:  \implies 6=  \frac{5+ 4  + y_{3}}{3}  \\  \\  \tt:  \implies 6\times 3 = 9+  y_{3}  \\  \\  \tt:  \implies  y_{3} = 18 -9 \\  \\  \green{\tt:  \implies  y_{3} =9} \\  \\  \green{\tt{\therefore Coordinate \: of \: R\: is \: (4,9)}}


Anonymous: Awesome :)
BrainlyConqueror0901: thnx : )
Answered by saivivek16
10

Step-by-step explanation:

Aloha !

Given,

P(3,5) & Q (8,4) & R (x³ , y³) And given centroid point (5,6)

G= (x¹+x²+x³/3, y¹+y²+y³/3)

(5,6)=(3+8+x³/3 , 5+4+y³/3)

(5,6)= ( 11+x³/3 , 9+y³/3)

Now,

5=11+x³/3

15=11+x³

x³=4

And,

6=9+y³/3

18=9+y³

y³=9

Therefore R(4,9)

Thank you

@ Twilight Astro ✌️☺️♥️

Similar questions