In a triangle show that b^2sin2c+c^2sin2b=2bcsina
Answers
Answered by
32
b2sin2C + c2sin2B
= b2(2sinC cosC) + c2(2sinB cosB)
Since, sinC/c =sinB/b = sinA/a = R
So,
= b2(2Rc cosC) + c2(2RbcosB)
=b2[2Rc ×{b2+a2 - c2}/(2ab)]+c2[2Rb×{a2 + c2-b2}/(2ac)]
=2Rbc [ {b2+a2 - c2}/(2a) + {a2 + c2-b2}/(2a)]
=2Rbc [ a]
= 2bc(Ra)
=2bcsinA
Rohitchaurasia:
please add me in the brain list
Similar questions