Math, asked by mamtarawat333213, 2 months ago

In a two digit number, the sum of the digits is 12. The digits interchange
their places if 54 is added to the number ,find the number .

Answers

Answered by kartikv2608
0

Answer:

33

Step-by-step explanation:

12/2 = 6

12 + 54 = 66

66/2 = 33

pls subscribe KV Talent

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Let-\begin{cases} &\sf{digits \: at \: ones \: place \: be \: x} \\ &\sf{digit \: at \: tens \: place \: be \: y} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:So-\begin{cases} &\sf{number \: formed \: be \: 10y + x} \\ &\sf{reverse \: number \: be \:10x +  y} \end{cases}\end{gathered}\end{gathered}

According to statement

Sum of digits of 2 digit number = 12

\rm :\longmapsto\:x + y = 12 -  -  - (1)

According to statement,

The digits are reversed if 54 is added to the number.

\rm :\longmapsto\:10y + x + 54 = 10x + y

\rm :\longmapsto\:10x + y - 10y - x = 54

\rm :\longmapsto\:9x - 9y = 54

\rm :\longmapsto\:x - y = 6 -  -  - (2)

On adding equation (1) and equation (2), we get

\rm :\longmapsto\:2x = 18

\bf\implies \:x = 9 -  -  - (3)

On substituting x = 9 in equation (1), we get

\rm :\longmapsto\:9 + y = 12

\bf\implies \:\:y = 3

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Hence-\begin{cases} &\sf{digits \: at \: ones \: place \:  =  \: 9} \\ &\sf{digit \: at \: tens \: place \:  =  \: 3} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:So-\begin{cases} &\sf{number \: formed \:  =  \: 10 \times 3 + 9 = 39} \\ &\sf{reverse \: number \:  =  \:10 \times 9 +  3 = 93} \end{cases}\end{gathered}\end{gathered}

Hence,

  • Two digit number is 39

Aliter Method

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Let-\begin{cases} &\sf{digits \: at \: ones \: place \: be \: x} \\ &\sf{digit \: at \: tens \: place \: be \: 12 - x} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:So-\begin{cases} &\sf{number \: formed = 10(12 - x) + x = 120 - 9x} \\ &\sf{reverse \: number \:  =  \:10x +  12 - x = 9x + 12} \end{cases}\end{gathered}\end{gathered}

According to statement,

The digits are interchange, when 54 is added to the number.

\rm :\longmapsto\:120 - 9x + 54 = 9x + 12

\rm :\longmapsto\:174 - 9x = 9x + 12

\rm :\longmapsto\:9x + 9x = 174 - 12

\rm :\longmapsto\:18x = 162

\bf\implies \:x = 9

\begin{gathered}\begin{gathered}\bf \: So - \begin{cases} &\sf{number \: formed = 120 - 9x = 120 - 81 = 39}\end{cases}\end{gathered}\end{gathered}

Similar questions