In AABC, if A+ B = 125° and A+ C = 113°, then find |A, B and C.
Answers
Answered by
7
Question :
In ∆ABC , if ∠A+∠B=125° and ∠A+∠C=113° , then find ∠A , ∠B and ∠C .
Answer :
∠A = 58° , ∠B = 67° and ∠C = 55°
Solution :
- Note : Angle sum property of a triangle ; The sum of all the three interior angles of a triangle is equal to 180° .
- Given : ∠A+∠B=125°, ∠A+∠C=113°
- To find : ∠A , ∠B , ∠C = ?
We have ,
∠A + ∠B = 125° -----(1)
∠A + ∠C = 113° ------(2)
Now ,
Adding eq-(1) and (2) , we get ;
=> ∠A + ∠B +∠A + ∠C = 125° + 113°
=> ∠A + (∠A + ∠B + ∠C) = 238°
=> ∠A + 180° = 238°
=> ∠A = 238° - 180°
=> ∠A = 58°
Now ,
Using eq-(1) , we get ;
=> ∠A + ∠B = 125°
=> 58° + ∠B = 125°
=> ∠B = 125° - 58°
=> ∠B = 67°
Now ,
Using eq-(2) , we get ;
=> ∠A + ∠C = 113°
=> 58° + ∠C = 113°
=> ∠C = 113° - 58°
=> ∠C = 55°
Hence ,
∠A = 58° , ∠B = 67° and ∠C = 55° .
Similar questions