Math, asked by devang2646, 11 months ago

In ∆abc a=4, b=5, C=7, then since/2=?

Answers

Answered by sanjeevk28012
0

Given :

For A Triangle, ABC

The value of a = 4

The value of b = 5

The value of c = 7

To Find :

The value of Sin\dfrac{C}{2}

Solution :

For any Triangle, from Sin Law

Sin\dfrac{C}{2}  =  \sqrt{\dfrac{\sqrt{(S-a)(S-b)} }{ab} }                ............1

 S = \dfrac{a+b+c}{2}

        = \dfrac{4+5+7}{2}

        = \dfrac{16}{2} = 8

Now, Put the value of S into eq 1

i.e  Sin\dfrac{C}{2} =  \sqrt{\dfrac{\sqrt{(S-a)(S-b)} }{ab} }    

                = \sqrt{\dfrac{(S-a)\times (S-b)}{a\times b}}

                = \sqrt{\dfrac{(8-4)\times (8-5)}{8\times 5}}

                = \sqrt{\dfrac{4\times 3}{8\times 5}}

               = \sqrt{\dfrac{ 3}{ 10}}

Hence, The value of  Sin\dfrac{C}{2}  is \sqrt{\dfrac{ 3}{ 10}}  Answer

Similar questions