Math, asked by adiabhi855, 1 month ago

In ∆ABC, AB=AC. P is the midpoint of AC and Q is the midpoint of AB. Prove that quadrilateral BCPQ is cyclic.​

Answers

Answered by Yoursenorita
3

 \\  \\ Given :  \\  \\ ABC is \:  a \:  triangle\\  \\  \\  PQ∣∣BC \\  \\ AD  \: is  \: the \:  median  \\ which  \: cuts \:  PQ  \: at \: R \:  \: \\  \\  \\ </p><p>To \:  prove :  \\  \\  \:  AD bisects PQ at R. \\  \\  \\ Proof :  \\  \\ In ΔABD \\  \\ PR∣∣BD \\  \\ </p><p></p><p> \frac{AP}{PB}  =  \:  \frac{AR}{RD} \:  \:  \:  ( \: BPT \: ) \\  \\  \\ </p><p></p><p>In ΔACD \\  \\ RQ∣∣DC \\  \\  \frac{AR}{RD}  =  \frac{AQ}{RD} ( \: BPT \: ) \\  \\  \\ In  \: ΔAPR  \: and \:  ΔABD,  \\  \\  \\ ∠APR=∠ABD \\  (corresponding \:  angles) \\  \\ </p><p></p><p>∠ARP=∠ADB \\  (corresponding  \: angles) \\  \\  \\ </p><p>∴ΔAPR  \: is  \: similar  \: to \:  ΔABD \\  \:  ( \: AA \:  similarity \: ) \\  \\  \\ ∴AP=AR=PR \\  (corresponding  \: sides \:  of  \:  \\ similar \:  triangles   \\  \: are  \: proportinal \: )  -  -  -  eq(i)\\  \\  \\ AB \:  \: AD \:  \: BD \:  \: </p><p></p><p> \\  \\  \\ Similarly  \: ΔARQ  \: is  \: similar  \\ \:  to \:  ΔADC \\  \\ </p><p> \frac{AQ}{AC}  =  \frac{AR}{AD}  =  \frac{RQ}{DC}  -  -  - eq(ii) \\  \\  hence \:  \\  \\  \\  \\  \\  \\ According  \: to  \:  \\ equation  \: (i)  \: and  \: (ii) </p><p> \\  \\  \\ </p><p>\frac{AR}{PR}  =  \frac{RQ}{AD}  =  \frac{BD}{DC}   \\  \\  \\  \\ </p><p></p><p> but \\  \\  BD=DC (given) \\  \\  \\ </p><p></p><p>∴PR=RQ \\  \\  \\ </p><p></p><p>or  \\  \\  \\ AD bisects PQ at R </p><p></p><p></p><p>

Attachments:
Answered by ItzStarling
0

Answer:

=

sinxcosx

1

\rm \: = \: \dfrac{2}{2 \: sinx \: cosx} =

2sinxcosx

2

\rm \: = \: \dfrac{2}{sin \: 2x} =

sin2x

2

\rm \: = \: 2cosec2x = 2cosec2x

Similar questions