Math, asked by regaanil, 9 months ago

In∆ abc and ∆ xyz,if angle A and angle X are acute angles.such that cos A= cos X . Show that angle A= angle X.

Answers

Answered by Anonymous
117

Assuming △ABC and △XYZ are right Triangles

 \sf  \bf\underline{Given} \\  \\  \sf{Cos \: A = Cos \: B} \\  \\  \sf{Cos \: A \:  = \: { \frac{AB}{AC} }} \\  \\  \sf{Cos \: X  \: = \:   \frac{XY}{XZ} } \\   \\  \sf{ \therefore \:  \:  \frac{AB}{AC} =  \frac{XY}{XZ}  = K \:  -  -  -  - (1) } \\  \\  \sf{By \: cross \: multiplication} \\  \\  \sf{ \frac{AB}{XY} =  \frac{AC}{XZ}   = K \:  -  -  -  -  (2)} \\  \\   \implies \sf{ \frac{BC}{YZ} =  \frac{ \sqrt{ {AC}^{2}  -  {AB}^{2} } }{ \sqrt{ {XZ}^{2}  -  {xy}^{2} }  }} \\  \\  \sf{ \implies  \frac{BC}{ZY} =  \frac{ \sqrt{ {AC}^{2} - K( {AC)}^{2}  } }{ \sqrt{ {XD}^{2} - k {(XD)}^{2}  }  }}  \:  \:  \:  \:  \: ( \because \: From \: equ \: 2)\\  \\  \sf{ \implies  \frac{BC}{YZ}  =  \frac{ \sqrt{ {AC}^{2}  -  {k}^{2}  {AC}^{2} } }{ \sqrt{{XZ}^{2} -   {K}^{2}   {XZ}^{2} } }}  \\  \\  \sf{  \implies\frac{BC}{YZ}  = \frac{ \sqrt{ {AC}^{2}   \:  { \cancel{ ({ 1 - K}^{2} )} } }}{ \sqrt{ {XZ \: }^{2} { \cancel{ {(1 - K}^{2} )} } }}} \\  \\  \sf{ \implies \frac{BC}{YZ} =  \frac{ \sqrt{ {CA}^{2} } }{ \sqrt{ {XZ}^{2} }  }}  \\  \\ \sf{ \implies  \frac{BC}{XZ} =  \frac{AC}{XY}  } \\  \\  \sf{ \implies  \frac{AB}{XY}  =  \frac{AC}{XZ}  =  \frac{BC}{YZ} } \\  \\  \sf{By \: SSA \: \triangle ABC \thicksim  \: \triangle XYZ} \\  \\  \sf{By \: properly \: of \: similarly } \\  \\  \purple{ \implies} \purple{ \underline{ \boxed{ \sf{ \angle A =  \angle X}}}}

Attachments:
Similar questions