Math, asked by wwwanuanas190, 6 months ago

in ∆ABC,angle B=90°.if AB =BC = 2cm and AC= 2√2 cm, find the value of sec C, cosec C, and cot C​

Answers

Answered by Anonymous
134

\setlength{\unitlength}{1cm} \begin{picture}(6,6) \put(2, 2){\line(0, 1){2}} \put(2,4){\line( 1, - 1){2}} \put(2, 2){\line(1,0){2}}   \put(2,1.8){\sf B}  \put(2,4){\sf A}   \put(4,1.8){\sf C} \put(3,1.8){\sf 2cm} \put(3,3){  $ \sf 2 \sqrt{2}cm $ } \put(1.1,3){\sf 2cm} \put(2,2.1){\sf  $ 90^{ \circ} $} \end{picture}

Given:

  • B = 90°
  • AB = BC = 2cm
  • AC = 22cm

Find:

  • Sec C, Cosec C and Cot C

Solution:

we, know that

 \sf \dashrightarrow  \sin C = \dfrac{H}{B} \\  \\

 \sf \dashrightarrow  \sin C = \dfrac{2 \sqrt{2} }{2} \\  \\

 \sf \dashrightarrow  \sin C = \sqrt{2}\\  \\

\therefore sin C = 2

Now,

 \sf \dashrightarrow  \cosec C = \dfrac{H}{P} \\  \\

 \sf \dashrightarrow  \cosec C = \dfrac{2 \sqrt{2} }{2} \\  \\

 \sf \dashrightarrow  \cosec C = \sqrt{2}\\  \\

\therefore cosec C = 2

Now,

 \sf \dashrightarrow  \cot C = \dfrac{B}{P} \\  \\

 \sf \dashrightarrow  \cot C = \dfrac{2}{2} \\  \\

 \sf \dashrightarrow  \cot C = 1 \\  \\

\therefore cot C = 1

_________________________

 \red{\sf \to \sin C = \sqrt{2}}\\  \\

 \green{ \sf \to  \cosec C = \sqrt{2}}\\  \\

 \pink{\sf \to  \cot C = 1} \\  \\

Similar questions