In ∆ ABC angle BAC = 90° seg BL and seg CM are medians of ∆ABC. Then prove that: 4(BLsquare + CM square) = 5BC square
Answers
Answer:
BL and CM are medians
\text{Then,$AL=\frac{AC}{2}$ and $AM=\frac{AB}{2}$}Then,AL=2AC and AM=2AB .........(1)
\text{In $\triangle$BAL, by pythagoras theorem}In △BAL, by pythagoras theorem
BL^2=AB^2+AL^2BL2=AB2+AL2 .......(2)
\text{In $\triangle$MAC, by pythagoras theorem}In △MAC, by pythagoras theorem
CM^2=AM^2+AC^2CM2=AM2+AC2 .......(3)
\text{In $\triangle$BAC, by pythagoras theorem}In △BAC, by pythagoras theorem
BC^2=AB^2+AC^2BC2=AB2+AC2 .......(4)
\text{Adding (2) and (3), we get}Adding (2) and (3), we get
BL^2+CM^2=AB^2+AL^2+AM^2+AC^2BL2+CM2=AB2+AL2+AM2+AC2
BL^2+CM^2=(AB^2+AC^2)+AL^2+AM^2BL2+CM2=(AB2+AC2)+AL2+AM2
\text{Using (4), we get}Using (4), we get
BL^2+CM^2=BC^2+AL^2+AM^2BL2+CM2=BC2+AL2+AM2
\text{Using (1), we get}Using (1), we get
BL^2+CM^2=BC^2+(\frac{AC}{2})^2+(\frac{AB}{2})^2BL2+CM2=BC2+(2AC)2+(2AB)2
BL^2+CM^2=BC^2+\frac{AC^2}{4}+\frac{AB^2}{4}BL2+CM2=BC2+4AC2+4AB
BL2+CM2=1/4(AB2+AC2)
BL2+CM2=BC2+1/4BC2
BL2+CM2=4B2+BC2/4
BL2+CM2=5BC2/4
4(BL2+CM2)=5BC2
HOPE IT HELPS YOU!!!