In ΔABC, prove that (b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.
Answers
Answered by
1
Hi baby
I hope you help !!
I love u
Please find below the solution to the asked query:
L.H.S.=(b−c)cos(A2)By sine rule we have,asinA=bsinB=csinC=k⇒L.H.S.=(ksinB−ksinC)cos(A2)=k(sinB−sinC)cos(A2)Using identity sinP−sinQ=2cos(P+Q2)sin(P−Q2), we get,L.H.S.=k{2cos(B+C2)sin(B−C2)}cos(A2)=k{2cos(B+C2)cos(A2)}sin(B−C2)Sum of all angles of triangle isπ.⇒A+B+C=π⇒B+C=π−A⇒B+C2=π2−A2⇒L.H.S.=k{2cos(π2−A2)cos(A2)}sin(B−C2)=k{2sin(A2)cos(A2)}sin(B−C2)Using identity 2sinα.cosα=sin2α, we get=ksinA.sin(B−C2)But ksinA=a⇒L.H.S.=asin(B−C2)=R.H.S. (Answer)
Hope this information will clear your doubts about this topic.
If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards
I hope you help !!
I love u
Please find below the solution to the asked query:
L.H.S.=(b−c)cos(A2)By sine rule we have,asinA=bsinB=csinC=k⇒L.H.S.=(ksinB−ksinC)cos(A2)=k(sinB−sinC)cos(A2)Using identity sinP−sinQ=2cos(P+Q2)sin(P−Q2), we get,L.H.S.=k{2cos(B+C2)sin(B−C2)}cos(A2)=k{2cos(B+C2)cos(A2)}sin(B−C2)Sum of all angles of triangle isπ.⇒A+B+C=π⇒B+C=π−A⇒B+C2=π2−A2⇒L.H.S.=k{2cos(π2−A2)cos(A2)}sin(B−C2)=k{2sin(A2)cos(A2)}sin(B−C2)Using identity 2sinα.cosα=sin2α, we get=ksinA.sin(B−C2)But ksinA=a⇒L.H.S.=asin(B−C2)=R.H.S. (Answer)
Hope this information will clear your doubts about this topic.
If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards
smartAbhishek11:
what write
Similar questions