Math, asked by sudhakhari6414, 1 year ago

In ΔABC, prove that (b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c.

Answers

Answered by smartAbhishek11
1
Hi baby
I hope you help !!
I love u
Please find below the solution to the asked query:

L.H.S.=(b−c)cos(A2)By sine rule we have,asinA=bsinB=csinC=k⇒L.H.S.=(ksinB−ksinC)cos(A2)=k(sinB−sinC)cos(A2)Using identity sinP−sinQ=2cos(P+Q2)sin(P−Q2), we get,L.H.S.=k{2cos(B+C2)sin(B−C2)}cos(A2)=k{2cos(B+C2)cos(A2)}sin(B−C2)Sum of all angles of triangle isπ.⇒A+B+C=π⇒B+C=π−A⇒B+C2=π2−A2⇒L.H.S.=k{2cos(π2−A2)cos(A2)}sin(B−C2)=k{2sin(A2)cos(A2)}sin(B−C2)Using identity 2sinα.cosα=sin2α, we get=ksinA.sin(B−C2)But ksinA=a⇒L.H.S.=asin(B−C2)=R.H.S. (Answer)

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards

smartAbhishek11: what write
smartAbhishek11: kb online rhogi
smartAbhishek11: tumse baat lena h kuchh
smartAbhishek11: important
Similar questions
Math, 1 year ago