Math, asked by avishkarkunchamwar, 2 months ago

in ∆ABC,prove that cos^2A-cos^2B/a+b + cos^2B-cos^2A/b+c +cos^2C-cos^2A/c-a =0​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

We know

By sine law, In triangle ABC,

\rm :\longmapsto\:\dfrac{a}{sinA}  = \dfrac{b}{sinB}   = \dfrac{c}{sinC}  = k

\rm :\implies\:a = k \: sinA

\rm :\implies\:b = k \: sinB

\rm :\implies\:c = k \: sinC

Consider,

\rm :\longmapsto\:\dfrac{ {cos}^{2}A -  {cos}^{2}B}{a + b}

\sf \:  =  \: \dfrac{(1 -  {sin}^{2}A) - (1 -  {sin}^{2}B)}{a + b}

\sf \:  =  \: \dfrac{ {sin}^{2}B -  {sin}^{2}A}{k \: sinA + k \: sinB}

\sf \:  =  \: \dfrac{\cancel{(sinA + sinB)} \: (sinB - sinA)}{k \: \cancel{(sinA + sinB)}}

\sf \:  =  \: \dfrac{sinB - sinA}{k}

\bf\implies \:\dfrac{ {cos}^{2}A -  {cos}^{2}B}{a + b} = \dfrac{sinB - sinA}{k} -  - (1)

Similarly,

\bf\implies \:\dfrac{ {cos}^{2}B -  {cos}^{2}C}{b + c} = \dfrac{sinC - sinB}{k} -  - (2)

Similarly,

\bf\implies\:\dfrac{ {cos}^{2}C- {cos}^{2}A}{c+a} =\dfrac{sinA - sinC}{k} -  - (3)

Now,

Consider,

\sf \:\dfrac{ {cos}^{2}A -  {cos}^{2}B}{a + b} + \dfrac{ {cos}^{2}B -  {cos}^{2}C}{b + c} + \dfrac{ {cos}^{2}C -  {cos}^{2}A}{c + a}

On substituting all the values evaluated above, we get

\sf \:  =  \: \dfrac{sinB - sinA}{k} + \dfrac{sinC - sinB}{k} + \dfrac{sinA - sinC}{k}

\sf \:  =  \: \dfrac{sinB - sinA + sinC - sinB + sinA - sinC}{k}

\sf \:  =  \: \dfrac{0}{k}

\sf \:  =  \: 0

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

Cosine Law :-

\boxed{\bf\: cosA = \dfrac{ {b}^{2}  +  {c}^{2} -  {a}^{2}}{2bc}}

\boxed{\bf\: cosB = \dfrac{ {c}^{2}  +  {a}^{2} -  {b}^{2}}{2ca}}

\boxed{\bf\: cosC = \dfrac{ {a}^{2}  +  {b}^{2} -  {c}^{2}}{2ab}}

Similar questions