In ΔABC, prove that .
Answers
Answered by
0
Solution :
*†**********************************
We know that ,
i ) SinB = b/2R
ii ) cosB = ( a²+c²-b²)/2ac
iii ) abc/R = 4∆
**********************************
1 ) tan B
= sinB/cosB
= ( b/2R )/[ ( a²+c²-b² )/2ac ]
= (b/2R)×[ (2ac )/(a²+c²-b²)]
= ( abc/R )/( a²+c²-b² )
= ( 4∆ )/( a²+c²-b² )
Similarly ,
tanC = ( 4∆ )/( a²+b²-c² )
Now ,
RHS = tanB/tanC
= [(4∆)/( a²+c²-b² )]/[(4∆)/(a²+b²-c²)]
= ( a²+b²-c² )/( a²+c²-b² )
= LHS
••••
*†**********************************
We know that ,
i ) SinB = b/2R
ii ) cosB = ( a²+c²-b²)/2ac
iii ) abc/R = 4∆
**********************************
1 ) tan B
= sinB/cosB
= ( b/2R )/[ ( a²+c²-b² )/2ac ]
= (b/2R)×[ (2ac )/(a²+c²-b²)]
= ( abc/R )/( a²+c²-b² )
= ( 4∆ )/( a²+c²-b² )
Similarly ,
tanC = ( 4∆ )/( a²+b²-c² )
Now ,
RHS = tanB/tanC
= [(4∆)/( a²+c²-b² )]/[(4∆)/(a²+b²-c²)]
= ( a²+b²-c² )/( a²+c²-b² )
= LHS
••••
Answered by
1
HELLO DEAR,
Answer:
Step-by-step explanation:
We know:- SinB = b/2R , cosB = ( a²+c²-b²)/2ac and abc/R = 4∆
now,
tan B
= sinB/cosB
= ( b/2R )/[ ( a²+c²-b² )/2ac ]
= (b/2R)×[ (2ac )/(a²+c²-b²)]
= ( abc/R )/( a²+c²-b² )
= ( 4∆ )/( a²+c²-b² )----------( 1 )
Similarly ,
tanC = ( 4∆ )/( a²+b²-c² )---------( 2 )
from---------( 1 ) & ----------( 2 )
tanB/tanC = [(4∆)/( a²+c²-b² )]/[(4∆)/(a²+b²-c²)]
= ( a²+b²-c² )/( a²+c²-b² )
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions