Math, asked by Anonymous, 3 months ago

In ΔABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:
(i) Sin A, cos A
(ii) sin C, cos C
Sol. In right ΔABC, we have: p = 24 cm, b = 7 cm
(by using pythgoras theorem)
(class 10,cbse)
{GOOD ANWERS= GOD WILL GIVE YOU A GIFT }
{BAD ANSWERS = GOD WILL PUNISH YOU }


asheeshrajput746: thanks
asheeshrajput746: mam
asheeshrajput746: ok

Answers

Answered by ShírIey
125

Appropriate Question:

  • In ΔABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:
  • (i) Sin A, cos A
  • (ii) sin C, cos C

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\star DIAGRAM:

\setlength{\unitlength}{1.5cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{B}}\put(10.6,1){\large\sf{C}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(7.1,2){\sf{\large{24 cm}}}\put(9,0.7){\sf{\large{7 cm}}}\put(9.4,1.9){\sf{\large{25 cm}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\end{picture}

⠀⠀⠀

In the given right ∆ABC,

⠀⠀⠀

\underline{\bigstar\:\boldsymbol{Using\: Pythagoras \ theorem\::}}\\ \\

⠀⠀⠀

\star\;\boxed{\sf{\pink{(Hypotenuse)^2 = (Perpendicular)^2 + (Base)^2}}}

⠀⠀⠀

:\implies\sf AC^2 = AB^2 + BC^2 \\\\\\:\implies\sf AC^2 = (24)^2 + (7)^2 \\\\\\:\implies\sf AC^2 = 576 + 49\\\\\\:\implies\sf AC = \sqrt{625}\\\\\\:\implies {\underline{\boxed{\frak{\purple{AC = 25\: cm}}}}}\;\bigstar

⠀⠀⠀

\therefore\:{\underline{\sf{Hence, \ value \ of \ AC \ is \  \bf{25 \ cm}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

⠀⠀⠀

I) Sin A, Cos A

⠀⠀

:\implies\sf Sin \ A = \dfrac{Base}{Hypotenuse}\\\\\\:\implies\sf  Sin \ A = \dfrac{BC}{AC}\\\\\\:\implies{\underline{\boxed{\frak{\pink{Sin \ A =  \dfrac{7}{25}}}}}}\:\bigstar

⠀⠀

:\implies\sf Cos \ A = \dfrac{Perpendicular}{Hypotenuse}\\\\\\:\implies\sf  Cos \ A = \dfrac{AB}{AC}\\\\\\:\implies{\underline{\boxed{\frak{\pink{Cos \ A =  \dfrac{24}{25}}}}}}\:\bigstar

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

II) Sin C, Cos C⠀⠀

⠀⠀

:\implies\sf Sin \ C = \dfrac{Perpendicular}{Hypotenuse}\\\\\\:\implies\sf  Sin \ C = \dfrac{AB}{AC}\\\\\\:\implies{\underline{\boxed{\frak{\purple{Sin \ C =  \dfrac{24}{25}}}}}}\:\bigstar

⠀⠀⠀

⠀⠀

:\implies\sf Cos \ C = \dfrac{Base}{Hypotenuse}\\\\\\:\implies\sf  Cos \ C = \dfrac{BC}{AC}\\\\\\:\implies{\underline{\boxed{\frak{\purple{Cos \ C =  \dfrac{7}{25}}}}}}\:\bigstar


ilov3myself: Presentation is too great <3
Anonymous: Mast answer
Anonymous: लाजवाब!!(^_^❤)
Anonymous: great explanation mam
Sen0rita: incredible !
sainiinswag: Perfect work
taranpreet07700: Awesome♡
asheeshrajput746: hlo
Answered by DARLO20
165

✅ See the attachment diagram.

 \\ \Large{\bf{\green{\underline{GiVeN\::}}}} \\

  • ABC is a right angle triangle

  • ∠B is right angled, i.e. 90°.

  • AB (Height) = 24 cm

  • BC (Base) = 7 cm

 \\ \Large{\bf{\pink{\underline{To\:FiNd\::}}}} \\

  1. Sin A , Cos A
  2. Sin C , Cos C

 \\ \Large{\bf{\purple{\underline{CaLcUlAtIoN\::}}}} \\

\bf\orange{According\:to\:Pythagoras\:theorem,} \\

\red\bigstar\:\:{\underline{\blue{\boxed{\bf{\green{(Hypotenuse)^2\:=\:(Height)^2\:+\:(Base)^2\:}}}}}} \\

:\implies\:\:\bf{(Hypotenuse)^2\:=\:(24)^2\:+\:7^2\:} \\

:\implies\:\:\bf{(Hypotenuse)^2\:=\:576\:+\:49\:} \\

:\implies\:\:\bf{(Hypotenuse)^2\:=\:625\:} \\

:\implies\:\:\bf{Hypotenuse\:=\:\sqrt{625}\:} \\

:\implies\:\:\bf\blue{Hypotenuse\:(AC)\:=\:25\:cm} \\ \\

\bf\pink{We\:know\:that,} \\

\orange\checkmark\:\:{\underline{\boxed{\bf{\purple{Sin\:\theta\:=\:\dfrac{Perpendicular}{Hypotenuse}}}}}} \\

  • Perpendicular is also the opposite side.

\green\checkmark\:\:{\underline{\boxed{\bf{\blue{Cos\:\theta\:=\:\dfrac{Base}{Hypotenuse}}}}}} \\

  • Base is also the adjacent side.

 \\

Sin A , Cos A

:\implies\:\:\bf{Sin\:A\:=\:\dfrac{BC}{AC}\:} \\

:\implies\:\:\bf\red{Sin\:A\:=\:\dfrac{7}{25}\:} \\

\Large\bf\purple{And,} \\

:\implies\:\:\bf{Cos\:A\:=\:\dfrac{AB}{AC}\:} \\

:\implies\:\:\bf\pink{Cos\:A\:=\:\dfrac{24}{25}\:} \\

Sin C , Cos C

:\implies\:\:\bf{Sin\:C\:=\:\dfrac{AB}{AC}\:} \\

:\implies\:\:\bf\orange{Sin\:C\:=\:\dfrac{24}{25}\:} \\

\Large\bf\blue{And,} \\

:\implies\:\:\bf{Cos\:C\:=\:\dfrac{BC}{AC}\:} \\

:\implies\:\:\bf\green{Cos\:C\:=\:\dfrac{7}{25}\:} \\

Attachments:

Sen0rita: Fantastic! :D
itzselfiequeen25: sure
itzselfiequeen25: sure
sainiinswag: Great work!!
PrashiSharmaa: ans (c) is correct
asheeshrajput746: it is very helpful
taranpreet07700: great
rajeshgodale11: hii
rajeshgodale11: I needdd gfffff
yrai57414: In ΔABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:
(i) Sin A, cos A
(ii) sin C, cos C
Similar questions