in∆ABC,right angled at C if tan A=1/√3 find the value of sinA. cosB+cosA.sinB
Answers
Answered by
3
Answer:
Given - ABC is a right angled triangle , tan A =
1/√3
Solution = tan A = 1/√3
tanA = tan 30° (tan 30° = 1/√3 )
A = 30°
C = 90° (Given)
So, Therefore , B = 90 - 30 = 60°(Angle sum property of a triangle / A + B + C = 180° )
Sin A • Cos B + Cos A • Sin B
Answered by
12
☢ AnSwer:
- The value of sin A cos B + cos A sin B = 1
━━━━━━━━━━━━━━━
✒ GiVen :
- tan A = 1/√3
✒ To Find :
- We need to find the value of sin A cos B + cos A sin B
✒ SoluTion :
As we know that,
tan 30° = 1 / √3
- A = 30
- C = 90 (given)
Now,
A + B + C = 180
30 +B + 90 = 180
B = 180 - 120
B = 60
Now,
sinA cosB + cos AsinB
sin(A + B)
sin(30°+60°)
sin90°
1
Therefore, value of sin A cos B + cos A sin B is 1.
━━━━━━━━━━━━━━━
Similar questions