Math, asked by ayushmuniyal, 9 months ago

in∆ABC,right angled at C if tan A=1/√3 find the value of sinA. cosB+cosA.sinB ​

Answers

Answered by Mrsenty
3

Answer:

Given - ABC is a right angled triangle , tan A =

1/√3

Solution = tan A = 1/√3

tanA = tan 30° (tan 30° = 1/√3 )

A = 30°

C = 90° (Given)

So, Therefore , B = 90 - 30 = 60°(Angle sum property of a triangle / A + B + C = 180° )

Sin A • Cos B + Cos A • Sin B

Answered by TheVenomGirl
12

AnSwer:

  • The value of sin A cos B + cos A sin B = 1

━━━━━━━━━━━━━━━

GiVen :

  • tan A = 1/√3

To Find :

  • We need to find the value of sin A cos B + cos A sin B

SoluTion :

As we know that,

\impliestan 30° = 1 / √3

  • A = 30
  • C = 90 (given)

Now,

\impliesA + B + C = 180

\implies30 +B + 90 = 180

\impliesB = 180 - 120

\impliesB = 60

Now,

\impliessinA cosB + cos AsinB

\impliessin(A + B)

\impliessin(30°+60°)

\impliessin90°

\implies1

Therefore, value of sin A cos B + cos A sin B is 1.

━━━━━━━━━━━━━━━

Similar questions