Math, asked by dhumaljuily3469, 1 year ago

In ΔABC, show that \frac{b^{2}\ -\ c^{2}}{a^{2}}\ =\ \frac{sin(B - C)}{sin(B + C)}.

Answers

Answered by MaheswariS
0

Answer:


Step-by-step explanation:

Formula used:


1. Sine formula:

a/sinA = b/sinB = c/sinC = 2R


2. sin²A - sin²B = sin(A+B) sin(A-B)



\frac{{b}^2-{c}^2}{{c}^2}

=\frac{{(2R\:sinB)}^2-{(2R\:sinB)}^2}{{2R\:sinC}^2}

=\frac{{(2R)}^{2}({ sin }^{2}B-{sin}^{2}C)}{{(2r)}^{2}{sin}^{2}A}

=\frac{{ sin }^{2}B-{sin}^{2}C}{{sin}^{2}A}

=\frac{sin(B+C)\:sin(B-C)}{{sin}^{2}(\pi-(B + C))}

=\frac{sin(B+C)\:sin(B-C)}{ {sin}^{2}(B + C)}

=\frac{sin(B+C)\:sin(B-C)}{sin(B + C)\:sin(B+C)}

=\frac{sin(B-C)}{sin(B + C)}


Similar questions