in ∆abc the value of cos(a-b)-cos(c) is
Answers
Answered by
7
Answer:
2cosacosb
Step-by-step explanation:
cos(a-b)-cosc
=-2sin(a-b+c)/2*sin(a-b-c)/2
=-2sin(180-b-b)*sin{a-(b+c)]/2
-2sin(90-b)*sin(a-(180-a))/2
=-2cosb*sin(a-180+a)/2
=-cosb*sin(2a-180)/2
=-2cosb*sin{-(90-a)}
=2cosb*sin(90-a)
=2cosacosb
Answered by
0
Answer:
cos(A-B) - cosC = 2cosBcosC
Step-by-Step Explanation:
As wkt, sum of three angles of triangle = 180°
i.e., A+B+C=180°
Now, cos(A-B) - cosC = 2 sin(A-B+C)/2 sin(C-A+B)/2
= 2 sin(180°-B-B)/2 sin(180°-A-A)/2
= 2 sin(180°-2B)/2 sin(180°-2A)/2
= 2 sin(90°-B) sin(90°-A)
= 2cosBcosC
Similar questions