In addition to transmission through ear, how else can sound reach to inner ear
Answers
Answered by
0
Hi mate,
ur question was so interesting so moving to the answer
The outer ear directs sound waves from the external environment to the tympanic membrane. The auricle, the visible portion of the outer ear, collects sound waves and, with the concha, the cavity at the entrance to the external auditory canal, helps to funnel sound into the canal. Because of its small size and virtual immobility, the auricle in humans is less useful in sound gathering and direction finding than it is in many animals. The canal helps to enhance the amount of sound that reaches the tympanic membrane. This resonance enhancement works only for sounds of relatively short wavelength—those in the frequency range between 2,000 and 7,000 hertz—which helps to determine the frequencies to which the ear is most sensitive, those important for distinguishing the sounds of consonants.
Sounds reaching the tympanic membraneare in part reflected and in part absorbed. Only absorbed sound sets the membrane in motion. The tendency of the ear to oppose the passage of sound is called acoustic impedance. The magnitude of the impedance depends on the mass and stiffness of the membrane and the ossicular chain and on the frictional resistance they offer.
When the tympanic membrane absorbs sound waves, its central portion, the umbo, vibrates as a stiff cone, bending inward and outward. The greater the force of the sound waves, the greater the deflection of the membrane and the louder the sound. The higher the frequency of a sound, the faster the membrane vibrates and the higher the pitch of the sound is. The motion of the membrane is transferred to the handle of the malleus, the tip of which is attached at the umbo. At higher frequencies the motion of the membrane is no longer simple, and transmission to the malleus may be somewhat less effective.
The malleus and incus are suspended by small elastic ligaments and are finely balanced, with their masses evenly distributed above and below their common axis of rotation. The head of the malleus and the body of the incus are tightly bound together, with the result that they move as a unit in unison with the tympanic membrane. At moderate sound pressures, the vibrations are passed on to the stapes, and the whole ossicular chain moves as a single mass. However, there may be considerable freedom of motion and some loss of energy at the joint between the incus and the stapes because of their relatively loose coupling. The stapes does not move in and out but rocks back and forth about the lower pole of its footplate, which impinges on the membrane covering the oval window in the bony plate of the inner ear. The action of the stapes transmits the sound waves to the perilymph of the vestibule and the scala vestibul a transfor
please mark it as brainliest Answer.
ur question was so interesting so moving to the answer
The outer ear directs sound waves from the external environment to the tympanic membrane. The auricle, the visible portion of the outer ear, collects sound waves and, with the concha, the cavity at the entrance to the external auditory canal, helps to funnel sound into the canal. Because of its small size and virtual immobility, the auricle in humans is less useful in sound gathering and direction finding than it is in many animals. The canal helps to enhance the amount of sound that reaches the tympanic membrane. This resonance enhancement works only for sounds of relatively short wavelength—those in the frequency range between 2,000 and 7,000 hertz—which helps to determine the frequencies to which the ear is most sensitive, those important for distinguishing the sounds of consonants.
Sounds reaching the tympanic membraneare in part reflected and in part absorbed. Only absorbed sound sets the membrane in motion. The tendency of the ear to oppose the passage of sound is called acoustic impedance. The magnitude of the impedance depends on the mass and stiffness of the membrane and the ossicular chain and on the frictional resistance they offer.
When the tympanic membrane absorbs sound waves, its central portion, the umbo, vibrates as a stiff cone, bending inward and outward. The greater the force of the sound waves, the greater the deflection of the membrane and the louder the sound. The higher the frequency of a sound, the faster the membrane vibrates and the higher the pitch of the sound is. The motion of the membrane is transferred to the handle of the malleus, the tip of which is attached at the umbo. At higher frequencies the motion of the membrane is no longer simple, and transmission to the malleus may be somewhat less effective.
The malleus and incus are suspended by small elastic ligaments and are finely balanced, with their masses evenly distributed above and below their common axis of rotation. The head of the malleus and the body of the incus are tightly bound together, with the result that they move as a unit in unison with the tympanic membrane. At moderate sound pressures, the vibrations are passed on to the stapes, and the whole ossicular chain moves as a single mass. However, there may be considerable freedom of motion and some loss of energy at the joint between the incus and the stapes because of their relatively loose coupling. The stapes does not move in and out but rocks back and forth about the lower pole of its footplate, which impinges on the membrane covering the oval window in the bony plate of the inner ear. The action of the stapes transmits the sound waves to the perilymph of the vestibule and the scala vestibul a transfor
please mark it as brainliest Answer.
Similar questions