In adjoining figure PQ⊥BC,AD⊥ BC then find following ratios.
(i) A(ΔPQB)/A(ΔPBC)
(ii)A(ΔPBC)/A(ΔABC)
(iii)A(ΔABC)/A(ΔADC)
(iv)A(ΔADC)/ A(ΔPQC)
Attachments:
Answers
Answered by
122
hope tou understand my answer
Attachments:
Answered by
71
Answer:
In adjoining figure PQ⊥BC,AD⊥ BC then find following ratios.
(i) A(ΔPQB)/A(ΔPBC) = BQ/BC
(ii)A(ΔPBC)/A(ΔABC) = PQ/AD
(iii)A(ΔABC)/A(ΔADC) = BC/DC
(iv)A(ΔADC)/ A(ΔPQC) = (DC * AD) / (QC * QP)
Step-by-step explanation:
A(ΔPQB) = (1/2) BQ * PQ
A(ΔPBC) = (1/2) BC * PQ
=> A(ΔPQB)/A(ΔPBC) = BQ/BC
A(ΔPBC) = (1/2) BC * PQ
A(ΔABC)
= (1/2) BC * AD
A(ΔPBC)/A(ΔABC) = PQ/AD
A(ΔABC) = (1/2) BC * AD
A(ΔADC) = (1/2) DC * AD
A(ΔABC)/A(ΔADC) = BC/DC
A(ΔADC) = (1/2) DC * AD
A(ΔPQC) = (1/2) QC * QP
A(ΔADC)/ A(ΔPQC) = (DC * AD) / (QC * QP)
Similar questions