Math, asked by cpushpa758, 11 months ago

In an=2n+3 then the value of S3 is

Answers

Answered by rajputvishal887
24
Just insert the formula and with the help of Formula of Sum of N terms, find the Answer.
Attachments:
Answered by Anonymous
51

AnswEr :

\underline{\textsf{As \: per \: given \: in \: question:}}

\normalsize\ : \implies\sf\ a_{n} = 2n + 3

\scriptsize\sf{\quad\dag\ Let \: the \: value \: of \: n \: be \: 1}

\normalsize\ : \implies\sf\ a_{1} = 2 \times\ 1 + 3

\normalsize\ : \implies{\boxed{\sf \blue{a_{1} = 5}}}

\scriptsize\sf{\quad\dag\ Let \: the \: value \: of \: n \: be \: 2}

\normalsize\ : \implies\sf\ a_{2} = 2 \times\ 2 + 3

\normalsize\ : \implies{\boxed{\sf \pink{a_{2} = 7}}}

 \rule{170}1

\underline{\bigstar\:\sf{From \: the \: Value \: of \: a_{2}\: \: and \: a_{1}:}}

\normalsize\dashrightarrow\sf\ Common \: difference(d) = a_{2} - a_{1}

\normalsize\dashrightarrow\sf\ d = 7 - 5

\normalsize\dashrightarrow{\boxed{\sf \red{ d = 2}}}

\underline{\bigstar\:\sf{Value \: of \: S_{3} :}}

\normalsize\bigstar{\boxed{\sf{S_{n} = \frac{n}{2} \left[2a + (n-1)d \right]}}}

\normalsize\dashrightarrow\sf\ S_{3} = \frac{3}{2} \left[ 2 \times\ 5 + ( 3 - 1)2 \right]

\normalsize\dashrightarrow\sf\ S_{3} = \frac{3}{2} \left[ 10 + (2)2 \right]

\normalsize\dashrightarrow\sf\ S_{3} = \frac{3}{2} \left[ 10 + 4 \right]

\normalsize\dashrightarrow\sf\ S_{3} = \frac{3}{\cancel{2}} \left[  \cancel{14} \right]

\normalsize\dashrightarrow\sf\ S_{3} = 21

\normalsize\dashrightarrow{\underline{\boxed{\sf \green{S_{3} = 21}}}}

Similar questions