Math, asked by jiab7a9neshshaswin, 1 year ago

in an A.P. GIVEN a3=15 ,S10=125, find d and a10

Answers

Answered by josimagic
465

Answer:

d = -1 and a10 = 8

Step-by-step explanation:

Formula:-

nth term of AP, tn = a + (n-1) d  

Sum of n terms Sn = n/2[2a + (n-1)d]

a - first term and d = common difference

To find a and d

It is given that, a3=15 ,S10=125

We can write a + 2d = 15  ----(1)

10/2[2a + 9d ] = 125

⇒5[2a + 9d ] = 125

⇒2a + 9d = 25  ----(2)

(1)*2 ⇒ 2a + 4d = 30 ---(3)

(2) - (3) ⇒

5d = -5

d = -1

eq (1) ⇒ a + 2d = 15

a + -1*2 = 15

a = 15 + 2 = 17

To find a10

a10 = a + 9d = 17 + 9*-1 = 17 - 9 = 8





Answered by bsssahani
81

Answer:

Given that, a3 = 15, S10 = 125

As we know, from the formula of the nth term in an AP,

an = a +(n−1)d,

Therefore, putting the given values, we get,

a3 = a+(3−1)d

15 = a+2d ………………………….. (i)

Sum of the nth term,

Sn = n/2 [2a+(n-1)d]

S10 = 10/2 [2a+(10-1)d]

125 = 5(2a+9d)

25 = 2a+9d ……………………….. (ii)

On multiplying equation (i) by (ii), we will get;

30 = 2a+4d ………………………………. (iii)

By subtracting equation (iii) from (ii), we get,

−5 = 5d

d = −1

From equation (i),

15 = a+2(−1)

15 = a−2

a = 17 = First term

a10 = a+(10−1)d

a10 = 17+(9)(−1)

a10 = 17−9

= 8

Similar questions