Math, asked by RDev50685, 5 months ago

In an A.P. if m th term is n and the n th term is m , where m≠n, find the p th term​

Answers

Answered by yourlovekwame
4

Answer:

let the mth term  A_{m} =nA_{m}= a+(m-1)d be eqn 1 and A_{n}=m

A_{n}= a+(n-1)d be eqn 2

subtracting eqn 2-eqn 1 ⇒ (2-1)⇒

d(n-1)-d(m-1) = m-n

dn-d-dm+d=m-n

dn-dm=m-n

d(n-m)= m-n

d(\frac{n-m}{m-n}) = \frac{m-n}{n-m}

d=1

substituting d=1 in eqn (1) ⇒

n= a+(m-1)1

n=a+m-1

n-m+1=a

The pth term therefore is

A_{p}=a+(p-1)d

n-m+1+(p-1)1 = A_{p}

n-m+1+p-1 = A_{p}

n-m+p=A_{p}

∴The pth term

A_{p}=n-m+p

Step-by-step explanation:

Similar questions