Math, asked by sameer7617, 1 year ago

in an A.P ,if Sn=n(4n+1),find A.P

Answers

Answered by AniketVerma1
12

given ,

Sn =n ( 4n + 1 )

=4n^2 + n


we know ,

Tn = Sn - S(n-1)

=4n^2+n -4 (n-1)^2 - (n-1)

=4 (n^2-n^2+2n-1)+(n-n+1)

=8n - 4 + 1

= 8n -3


hence ,

Tn = 8n -3

T1 =8 (1)-3 =5

T2= 8 (2)-3 =13

-----------

-------------


so, AP is 5, 13 , 21 ,...




sameer7617: by how you solved Sn-1 part
Answered by BrainlyConqueror0901
78

Answer:

\huge{\pink{\boxed{\green{\sf{\therefore A.P=5,13,21.....}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:   \:  \:  \:  \: {\orange{given}} \\  {\pink{ \boxed{ \green{Sn = n(4n + 1)}}}} \\   \\ {\blue{to \: find}} \\  {\purple{ \boxed{ \red{A.P =? }}}}

According to given question:

sum of nth term is given.

let n =1,2,3....

 \to Sn = n(4n + 1) \\  \to S1 = 1(4 \times 1 + 1) \\ { \boxed {\to S1 = 5 }}\\  \\ \to S2 = 2(4 \times 2 + 1) \\  \to S2 = 2(9) \\  { \boxed{\to S2 = 18}} \\  \\  \to S3 = 3(4 \times 3 + 1) \\  \to S3 = 3 \times 13 \\ { \boxed{\to S3 = 39 }} \\  \\ { \boxed{ \to s1 = a1 = 5}} \\  \\ \to a2 = S2 - S1 \\  \to a2 = 18 - 5 \\  { \boxed{\to a2 = 13}} \\  \\  \to a3 = S3- S2  \\  \to a3 = 18 - 39 \\ { \boxed{ \to a3 = 21}} \\  \\  { \pink{ \boxed{ \green{\therefore  A.P = 5,13,21....}}}}

_________________________________________

Similar questions