Math, asked by liza6995, 1 year ago

In an A.P.,if Sn = n(4n+1) ,Find the A.P.

Answers

Answered by RiaMariaS
1

sn=n(4n+1).

s1=5

5=1/2(2a)

5=1/a

5a=1

a=1/5

.....upto this crct...

after that....s2=18

18=2/2(1/5+an)

18=1/5+an

90=an+1

an=89

an =a+(n-1)d

89=1/5+88d

89*5=88d+1

445=88d+1

444=88d

88d=444

d=444/88

d=111/22

ap=a+d.... and so on ..


RiaMariaS: not sure...if not ri8 sry
Answered by BrPiYuSHGuPtA
0

Answer:

\huge{\pink{\boxed{\green{\sf{\therefore A.P=5,13,21.....}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \:  \:  \: { \orange{ given}}\\ { \pink{ \boxed{ \green{Sn = n(4n + 1)}}}} \\  \\ { \blue{ to \: find}} \\ {\purple{ \boxed{ \red{A.P = ?}}}}

According to given question:

let n be some positive integer 1,2,3,4

 \to n = 1 \\  \to Sn = n( 4n + 1) \\  \to S1 = 1(4 \times 1 + 1) \\  { \boxed{\to S1 = 5}} \\  \\  \to n = 2 \\  \to S2 = 2(4 \times 2 + 1) \\  \to S2 = 2 \times 9 \\ { \boxed{ \to S2 = 18}} \\  \\  \to n = 3  \\  \to S3 = 3(4 \times 3 + 1) \\  \to S3 = 3 \times 13 \\  { \boxed{\to s3 = 39}} \\  \\  { \boxed{ S1 =a1 = 5}} \\  \\   \to a2 = S2 -  S1 \\  \to a2 = 18 - 5 \\  { \boxed{\to a2 = 13}} \\  \\  \to a3 = S3 - S2 \\  \to a3 = 39 - 18 \\  { \boxed{\to a3 = 21}} \\  \\ {\pink{ \boxed{ \green{ \therefore A.P= 5,13,21.....}}}}

_________________________________________

Similar questions