Math, asked by poorvasharma, 1 year ago


In an A. P. of 50 terms, the sum of first 10 terms is 210 and the sum of its last 15 terms is 2565.
the A.P.​

Answers

Answered by Anonymous
112

Solution:

Given:

=> A.P consist of 50 terms.

=> Sum of first 10 terms = 210.

=> Sum of last 15 terms = 2565.

To Find:

=> Find A.P

Formula used:

\sf{\implies S_{n}=\dfrac{n}{2}[2a+(n-1)d]}

So, We know that sum of first n terms of an A.P is given by,

\sf{\implies S_{n}=\dfrac{n}{2}[2a+(n-1)d]}

Put n = 10, we get

\sf{\implies S_{10}=\dfrac{10}{2}[2a+9d]}

\sf{\implies 210=5(2a+9d)}

\sf{\implies 3a+9d=42\;\;\;\;.........(1)}

Sum of last 15 terms is 2565.

\sf{\implies Sum\;of\;first\;50\;terms-Sum\;of\;first\;35\;terms = 2565}

\sf{\implies S_{50}-S_{35}=2565}

\sf{\implies \dfrac{50}{2}[2a+(50-1)d]-\dfrac{35}{2}[2a+(35-1)d]=2565}

\sf{\implies 25(2a+49d)-\dfrac{35}{2}(2a+34d)=2565}

\sf{\implies 5(2a+49d)-\dfrac{7}{2}(2a+34d)= 513}

\sf{\implies 3a+126d=513}

\sf{\implies a+42d=171\;\;\;\;........(2)}

Multiply Eq(2) by 2, we get

\sf{\implies 2a+84d=342\;\;\;\;........(3)}

Now, Subtracting Eq(1) from Eq(3), we get

\sf{\implies 84d-9d=342-42}

\sf{\implies 75d=300}

\sf{\implies d=\dfrac{300}{75}=4}

Now, Put the value of d in Eq(2), we get

\sf{\implies a+42d=171}

\sf{\implies a+42(4)=171}

\sf{\implies a+168=171}

\sf{\implies a=3}

So, A.P is

=> a = 3

=> a + d = 7

=> a + 2d = 11

=> a + 3d = 15

So, required A.P is 3, 7, 11, 15,..........

Answered by BrainlyConqueror0901
83

[FOR WEBSITE VIEWER]

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore A.P=3,7,11,15...}}

{\bold{\underline{\underline{Step-by-step\:explantion:}}}}

• In the given question information givem about an A. P. of 50 terms, the sum of first 10 terms is 210 and the sum of its last 15 terms is 2565.

• We have to find the A.P.

 \underline \bold{Given : } \\  \implies Number \: of \: terms(n) = 50 \\  \\  \implies  S_{10} = 210 \\  \\  \implies  S_{15}(From \: last) = 2565 \\  \\  \underline \bold{To \: Find  : }  \\  \implies A.P = ?

• According to given question :

\bold{For \: sum \: of \: 10th \: term : } \\  \implies  S_{10} =  \frac{10}{2} (2a + (10 - 1) \times d)\\  \\  \implies  210 = 5(2a + 9d) \\  \\  \implies  \frac{210}{5} = 2a + 9d \\  \\  \implies 2a + 9d = 42 -  -  -  -  - (1) \\  \\  \bold{For \: sum \: of \: last \: 15 \: terms  : } \\  \\  \implies  S_{15}(from \: end) =  \frac{15}{2} (2 \times  a_{36} + (15 - 1) \times d) \\  \\  \implies 2565 =  \frac{15}{2} (2 \times (a + 35d) + 14d)\\  \\  \implies 2565 =  \frac{15}{2} (2a + 70d + 14d) \\  \\  \implies 2565 \times 2 = 15(2a + 84d) \\  \\  \implies  \frac{ \cancel{2565} \times 2} { \cancel{15}}  = 2(a + 42d) \\  \\  \implies a + 42d = \frac{171 \times  \cancel2}{ \cancel2}  \\ \\  \implies a + 42d = 171 \\   \\ \implies a = 171 - 42d -  -  -  -  - (2) \\  \\  \bold{Putting \: value \: of \: a \: in \: (1)} \\  \implies 2(171 - 42d) + 9d = 42 \\  \\  \implies 342 - 84d + 9d =  42 \\  \\  \implies   - 75d=42 - 342 \\  \\  \implies  \cancel - 75d =    \cancel- 300 \\  \\  \implies d =  \frac{300}{75}  \\  \\   \bold{\implies d =  4} \\  \\  \bold{Putting \: value \: of \: d \: in \:(1)} \\  \implies 2a + 9 \times 4 = 42 \\  \\  \implies  2a + 36  = 42 \\  \\  \implies 2a + 450 = 484 \\  \\  \implies 2a = 42 - 36 \\  \\  \implies a =   \frac{6}{2}   \\  \\   \bold{\implies a =3} \\  \\   \bold{\therefore A.P = 3,7,11,15....}

Attachments:
Similar questions