Math, asked by eliena44, 1 year ago

In an A.P. of 50 terms, the sum of first 10 terms is 210 and the sum of its last 15 terms is 2565. Find the A.P.

Answers

Answered by Anonymous
14
■ Let ' a ' be the first term and ' d ' be the common difference of the required A.P.

nth term of A.P. =》

An = a + ( n - 1 ) d

■ And the sum of first n terms of A.P. =》

Sn = n/2 [ 2a + ( n - 1 ) d ]

Sum of first 10 terms ,

S10 =》 210 = 10 / 2 [ 2 * a + ( 10 - 1 ) d

=》210 = 5 [ 2a + 9d ]

=》42 = 2a + 9d

2a + 9d = 42 ................( 1 )

■ 15th term from the last = ( 50 - 15 + 1 )

=》36th term

An = a + ( n - 1 ) d

An = a + ( n - 1 ) d

a36 = a + 35d

■ Sum of last 15 terms =》

s15 =》2565 = 15 / 2 [ 2a + ( 15 - 1 ) d ]

Put the value of a36 at " a "

2565 = 15 / 2 [ 2 ( a + 35d ) + 14d ]

2565 = 15 [ a + 35d + 7d ]

a + 42d = 171 ....................( 2 )

■ Subtracting eq. ( 2 ) from eq. ( 1 ) , we get ,

First multiply eq. ( 2 ) by 2 =》

2a + 84d = 342

On subtracting ,

9d - 84d = 42 - 342

75d = 300

d = 300 / 75

d = 4

■ Put the value of d in eq. ( 2 )

a + 42d = 171

42 * 4 + a = 171

168 + a = 171

a = 171 - 168

a = 3

\textbf{So , the A.P. formed is 3 , 7 , 11 , 15 .......... 199}

Thanks

eliena44: Fantastic answer - thank you so much bhaiya
Anonymous: : ))
Answered by Anonymous
0

   \underline{  \underline{\bf{Answer}}}  :  -  \\   \implies \: 3, \: 7 \:, 11 \: ,15, \: ..........,199 \\ \\   \underline{\underline{ \bf{Step - by  - step \: explanation \: }}} :  -  \\  \\

According to the question:-

 \bf{sum \: of \: first \: 10 \: terms \:( s_{10})   = 210} \\   210 =  \frac{10}{2} \bigg (2a + (101)d \bigg) \: \\   \\ 2a + 9d = 42 \: .........(1)\\   \\ \bf{sum \: of \: last \: 15 \: terms \: ( s_{15})= 2565} \\ \\  s_{50} -s_{35} = 2565  \\  \\ 2565 =  \frac{50}{2}  \bigg(2a + (50 - 1)d \bigg)  -  \frac{35}{2} \bigg(2a + (35 - 1)d \bigg) \\  \\ 2565 = 25(2a + 49d) - 35(a + 17d)  \\  \\  2565 = 50a + 1225d - 35a - 595d \\  \\ after \: solving \: this \:  \\  \\ a + 42d = 171 \:  ...........(2) \\  \\ from \: eq(1) \: and \: (2) \\  \\eq (1) \times 42 - \: eq (2) \times 9 \\  \\ we \: get \:  \\  \\ a = 3 \: d = 4 \\

Hence required AP is →

3,7,11,15,....,199

Similar questions