Math, asked by akshankarsruj, 1 year ago

In an acute angled triangle, express a median in terms of its sides.

Answers

Answered by Golda
48
Given in Δ ABC, AD is median.
Construction: AE ⊥ BC
Now since AD is the median
∴ BD = CD = 1/2 BC ....(1)
In Δ AED 
AD² = AE² + DE² (Pythagoras Theorem)
⇒ AE² = AD² - DE² .....(2)
In Δ AEB
AB² = AE² + BE²
⇒ AD² - DE² + BE² {From (2)}
= (BD + DE)² + AD² - DE² (∴ BE = BD + DE)
BD² + DE² + 2BD*DE + AD² - DE²
= BD² + AD² + 2BD*DE
= (1/2BC)² + AD² + (2×1/2BC×DE)   {From (1)}
= (1/4BC)² + AD² + BC*DE ....(3)
In Δ AED
AC² = AE² + EC²
= AD² - DE² + EC²
= AD² - DE² + (DC - DE)²
= AD² - DE² + DC² + DE² - 2DC*DE
AD² + DC² - 2DC*DE
= AD² + (1/2BC)² - (2×1/2BC*DE)
= AD² + (1/4BC)² - BC*DE ....(4)
Adding (3) and (4), we get 
AB² + AC² =1/4BC² + AD² + BC*DE + AD² + 1/4BC² - BC*DE 
= 1/2BC² + 2AD²
2(AB² + AC²) = BC² + 4AD²
2AB² + 2AC² = BC² + 4AD²  Answer.
Attachments:
Answered by saran7793
30

this answer is dealt without omitting any steps please prefer this answer so that you can be clear minded about this question this is one of the most preferred questions are referred questions

Attachments:
Similar questions