In an acute angled triangle, express a median in terms of its sides.
Answers
Answered by
48
Given in Δ ABC, AD is median.
Construction: AE ⊥ BC
Now since AD is the median
∴ BD = CD = 1/2 BC ....(1)
In Δ AED
AD² = AE² + DE² (Pythagoras Theorem)
⇒ AE² = AD² - DE² .....(2)
In Δ AEB
AB² = AE² + BE²
⇒ AD² - DE² + BE² {From (2)}
= (BD + DE)² + AD² - DE² (∴ BE = BD + DE)
BD² + DE² + 2BD*DE + AD² - DE²
= BD² + AD² + 2BD*DE
= (1/2BC)² + AD² + (2×1/2BC×DE) {From (1)}
= (1/4BC)² + AD² + BC*DE ....(3)
In Δ AED
AC² = AE² + EC²
= AD² - DE² + EC²
= AD² - DE² + (DC - DE)²
= AD² - DE² + DC² + DE² - 2DC*DE
AD² + DC² - 2DC*DE
= AD² + (1/2BC)² - (2×1/2BC*DE)
= AD² + (1/4BC)² - BC*DE ....(4)
Adding (3) and (4), we get
AB² + AC² =1/4BC² + AD² + BC*DE + AD² + 1/4BC² - BC*DE
= 1/2BC² + 2AD²
2(AB² + AC²) = BC² + 4AD²
2AB² + 2AC² = BC² + 4AD² Answer.
Construction: AE ⊥ BC
Now since AD is the median
∴ BD = CD = 1/2 BC ....(1)
In Δ AED
AD² = AE² + DE² (Pythagoras Theorem)
⇒ AE² = AD² - DE² .....(2)
In Δ AEB
AB² = AE² + BE²
⇒ AD² - DE² + BE² {From (2)}
= (BD + DE)² + AD² - DE² (∴ BE = BD + DE)
BD² + DE² + 2BD*DE + AD² - DE²
= BD² + AD² + 2BD*DE
= (1/2BC)² + AD² + (2×1/2BC×DE) {From (1)}
= (1/4BC)² + AD² + BC*DE ....(3)
In Δ AED
AC² = AE² + EC²
= AD² - DE² + EC²
= AD² - DE² + (DC - DE)²
= AD² - DE² + DC² + DE² - 2DC*DE
AD² + DC² - 2DC*DE
= AD² + (1/2BC)² - (2×1/2BC*DE)
= AD² + (1/4BC)² - BC*DE ....(4)
Adding (3) and (4), we get
AB² + AC² =1/4BC² + AD² + BC*DE + AD² + 1/4BC² - BC*DE
= 1/2BC² + 2AD²
2(AB² + AC²) = BC² + 4AD²
2AB² + 2AC² = BC² + 4AD² Answer.
Attachments:
Answered by
30
this answer is dealt without omitting any steps please prefer this answer so that you can be clear minded about this question this is one of the most preferred questions are referred questions
Attachments:
Similar questions