Math, asked by shumailanizam128, 8 months ago

In an ap a=5 , d=3 ,an =50 find n and sn

Answers

Answered by Tomboyish44
18

Given:

  • a (First term) = 5
  • d (Common difference) = 3
  • an (Final term) = 50

To Find:

  • n and Sn

Solution:

We know that;

⇒ an = a + (n - 1)d

⇒ 50 = 5 + (n - 1)3

⇒ 50 - 5 = 3n - 3

⇒ 45 = 3n - 3

⇒ 45 + 3 = 3n

⇒ 48 = 3n

⇒ n = 48/3

n = 16

We know that;

\Longrightarrow \sf S_n = \dfrac{n}{2} \Bigg(2a + (n-1)d\Bigg) \\ \\ \\ \\\Longrightarrow \sf S_{16} = \dfrac{16}{2} \Bigg(2(5) + (16-1)3\Bigg) \\ \\ \\ \\\Longrightarrow \sf S_{16} = 8 \Bigg(10 + (15)3\Bigg) \\ \\ \\ \\\Longrightarrow \sf S_{16} = 8 \bigg(10 + 45\bigg) \\ \\ \\ \\\Longrightarrow \sf S_{16} = 8 \bigg(55\bigg) \\ \\ \\ \\\Longrightarrow \sf S_{16} = 440 \\ \\ \\ \\

∴ S\sf _{n} = 440

Final Answers:

  • n = 16
  • Sn = 440
Answered by ThakurRajSingh24
21

GIVEN :-

  \star \tt \:a \:  = 5 \\  \star \tt \: d \:  = 3 \\  \star  \tt\: a_n  = 50\:

TO FIND :-

\star \tt{n}

\star \tt{S_n}

SOLUTION :-

As we know that,

</p><p> \dagger \: { \boxed { \red{ \tt{a_n = a + ( n - 1)d}}}}

[ Put the values ]

 \longrightarrow \:  \tt \: 50 = 5 + ( n - 1)3 \\ \\ \longrightarrow \:  \tt 50 =5 +  3n - 3  \\ \\ \longrightarrow \:  \tt 50 - 5 + 3 = 3n \\  \\\longrightarrow \:  \tt 48 = 3n \\ \\ \longrightarrow \:  \tt n =  \frac{ \cancel{48}}{ \cancel3}  \\ \\ \longrightarrow \:  \tt  \huge \red {  n \:  =16 }

Now,

  \dag \: { \boxed { \red{ \tt{S_n =  \frac{n}{2} (2a + (n - 1)d)}}}}

[ Put the values ]

 \longrightarrow \tt \: S_n  =  \frac{ \cancel{16}}{ \cancel2}[ (2 \times 5 + ( 16 - 1)]3 \\ \\\longrightarrow \tt \: S_n = 8   [10 + (15)3] \\ \\\longrightarrow \tt \: S_n  = 8 [10 + 45] \\ \\ \longrightarrow \tt \: S_n   = 8(55) \\\\  \longrightarrow \tt \:  \huge \red{S_n   = 440}

Similar questions