Math, asked by mohammedmateenp9r4is, 1 year ago

in an AP given a=5,d=3,,an=50,findn and sn

Answers

Answered by AkshithaZayn
0
Hey there!

Given,

a = 5

d = 3

a {n} = 50

n = (\frac{an - a}{d} ) + 1

n = ( \frac{50 - 5}{3} )

n = \frac{45}{3}

n = 15

sn = \frac{n}{2} ( 2a + (n - 1)d)

 \frac{15}{2} (2 \times 5 + (15 - 1)3)

 \frac{15}{2} \times 10 + 14 \times 3

= 390.

So, n = 15
sn = 390

Glad if helped.
Answered by Anonymous
37

Answer:

Given -

  • a = 5
  • d = 3
  • \sf{a}_{n} = 50

We know that ,

 \\  \sf \: a_n = a + (n - 1) \: d \\  \\  \\  \implies \sf \: 50 = 5 + (n - 1) \: 3 \\  \\  \\  \implies \sf \: 50 - 5 = (n - 1) \: 3 \\  \\  \\  \implies \sf \: n - 1 = \cancel  \dfrac{45}{3}  \\  \\  \\  \implies \sf \: n - 1 = 15 \\  \\  \\  \implies \sf \: n = 1 + 15 \\  \\  \\  \implies  \large{ \underline{ \boxed {\sf{ \blue{n = 16}}}}} \\  \\

_________________________________________________

 \\  \\  \sf \: s_n =  \dfrac{n}{2}  \bigg( \: 2a + (n - 1) \: d \bigg) \\  \\  \\  \implies \sf \:  \dfrac{n}{2}  \:  \bigg( \: a + \underline{ a + (n - 1) \: d} \bigg) \\  \\  \\  \implies \sf \:  \dfrac{n}{2}  \:  \bigg( \: a + a_n \bigg) \\  \\  \\  \implies \sf \: s_{16} =   \cancel\dfrac{18}{2}  \:  \bigg(5 + 50 \bigg) \\  \\  \\  \implies \sf \: s_{16} = 8 \times 55 \\  \\  \\ \implies  \large{ \underline{ \boxed {\sf{ \green{s_{16} = 440}}}}} \\  \\

Similar questions