Math, asked by dikshithsvdhanush, 8 months ago

In an AP , Given a12 = 37,d=3 find a and s12​

Answers

Answered by TheVenomGirl
10

 \sf \: a = 4 \: and \:  {s}^{12}  = 246

Given :-

  •  \sf \:  {a}^{12}  = 37
  •  \sf \: d = 3
  •  \sf \: n = 12

To Find :-

  •  \sf \: Value \:  of \:  a  \: and  \:  {s}^{12}

Solution :-

{ \underline{According  \: to  \: the \:  question, }}

  : \implies  \:  \: \:  \sf \: a_{n} = a + (n - 1)d \\ : \implies  \:  \: \: \sf \: 37 = a + (12 - 1)3 \\ : \implies  \:  \: \: \sf \: 37 = a + (11)3 \\ : \implies  \:  \: \: \sf \: 37 = a + 33 \\ : \implies  \:  \: \: \sf \: a = 37 - 33 \\ : \implies  \:  \: \:  { \boxed{ \blue{ \sf \: a = 4}}}

Now,

: \implies  \:  \: \: \sf \:  s_{n} =  \dfrac{n}{2} (a + 1) \\ : \implies  \:  \: \: \sf \: s_{n} =  \dfrac{12}{2}(4 + 37) \\ : \implies  \:  \: \:  \sf \: s_{n} = 6 \times 41 \\ : \implies  \:  \: \: \:  { \boxed{ \blue{ \sf \: s_{n} = 246}}}

Similar questions