Math, asked by vivek999990, 3 months ago

In an AP given an = 4, d = 2, Sn = -14 find n and a​

Answers

Answered by gohilpriti1976
0

Answer:

an=a (n-1)d

putting values:

4=a (n-1) 2

a(n-1)=2

a(n) =2-1

a(n) = 1

a =1 and n= 1

sn is used in question of finding sum

Answered by Anonymous
3

Given :

  • \sf \: a_{n} = 4
  • \sf \: d = 2
  • \sf \: S _{n} =  - 14

Find :

  • Find the value of n and a .

Solution :

  \boxed{   \red{\sf \:  a_{n} = a + (n - 1)d }}\\ \\   \rightarrow  \sf4 = a + (n - 1)2 \\  \rightarrow \sf4 = a + 2n -2 \\  \rightarrow \sf6 = a + 2n \\  \boxed{ a = 6 - 2n} \\  \\ \:  \:  \boxed{   \red{\sf S_{n} =  \frac{n}{2} (2a + (n - 1)d)}} \\  \\  \rightarrow  \sf \: - 14 =  \frac{n}{2}[ 2 (6n - 2n) + (n - 1)2] \\  \\  \rightarrow \sf - 14 =  \frac{n}{2} (12 - 4n + 2n - 2) \\ \\   \rightarrow \sf - 14 =  \frac{n}{2} ( 10_{n} - 2_{n}) \\  \\  \rightarrow \sf - 28 = n(10 - 2n) \\ \\   \rightarrow \sf - 28 = 10n  - 2n {}^{2}  \\  \\  \rightarrow \sf2n {}^{2}  - 28 - 10n = 0 \\  \\  \implies \sf \: 2n {}^{2}  - 10n - 28 = 0 \\  \\ \sf\colorbox{orange}{All these terms divisible by 2} \\  \\ \rightarrow \sf n {}^{2}  - 5n - 14 = 0 \\  \\ \rightarrow  \sf(n - 7)(n + 2) \\  \\  \boxed{ \sf \: n - 7 = 0  \implies \: n = 7} \\  \\  \boxed{ \sf \: n + 2 \implies \: n =  - 2}  \\  ( \sf\green{number \: of \: terms \: can \: not \: be \: negative)} \\  \sf \: so \: the \: value \: of \: n \: is \:  \\  \boxed{ \green {\sf \: n =7 }} \\  \\  \boxed{ \sf \: a = 6 - 2n} \\  \rightarrow \: \sf a = 6 - 2 \times 7 \\   : \implies \sf \: a = 6 - 14 \\   :  \implies \boxed{ \green{ \sf \: a =  - 8}}

Therefore the value of a = -8 and value of n = 7 .

•••••♪♪

Similar questions