Math, asked by samsonanitajoel, 1 month ago

in an ap: given an=56,d=7,sn=147 find a and​

Answers

Answered by SparklingBoy
52

 \red{ \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  COMPLETE \:  \:  QUESTION  \:   \maltese }}}}}

QIn an AP, GIVEN

 \large \bf a_n = 56  \:,d = 7 \:,S_n = 147

Then Find the value of a

and 'n'

\Large\green{\qquad\underline{\pmb{{ \mathbb { \maltese  \:  GIVEN \:   \maltese }}}}}

 \bf \: a_n(nth \: term) = 56 \\  \\  \bf d(common \:difference)= 7 \\ \\   \bf S_n(Sum \: of \: n \: terms)= 147

 \purple{\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  REQUIRED  \:  \: INFO \:   \maltese }}}}}

\bigstar \mathfrak{ \text{S}um  \:  \: of \:  \: n \:  \: terms \:  \: of \:  \:  \bf AP}\\ \bf S_n =  \frac{n}{2}  \{a + a_n \}

 \bigstar \mathfrak{ \:  \: nth \: term \: of \: an \:  \bf AP} \\  \bf a_n = a + (n - 1)d

  \Large \orange{\qquad \underline{ \pmb{{ \mathbb{ \maltese  \:SOLUTION  \:   \maltese }}}}}

 \large \mathfrak{ \text{W}e \:   \text{K}now }

 \bf S_n =  \frac{n}{2}  \{a + a_n \} \\  \\  \sf147 =  \frac{n}{2} (a + 56) \\  \\ \bf294= n(a + 56)\:\:\:\:(i)

 \bf a_n = a + (n - 1)d \\  \\  \sf56 = a + (n - 1)7 \\  \\  \sf56 = a + 7n - 7  \\  \\  \bf a = 63 -7n\:\:\:\:(ii)

Putting (ii) in (i)

 \sf 294 = n(63 - 7n + 56) \\  \\  \sf 294 = n(119 - 7n) \\  \\  \sf294 = 119n - 7 {n}^{2}  \\  \\ \sf 7 {n}^{2}  - 119n + 294 = 0 \\  \\ \sf  {n}^{2}  - 17n + 42= 0 \\  \\   \sf{n}^{2}  - 14n - 3n + 42 = 0 \\  \\  \sf n(n - 14) - 3(n - 14) = 0 \\  \\  \sf (n - 14)(n - 3) = 0 \\  \\  \implies\bf\color{magenta} \Large \boxed{\boxed{\{n = 14 \:  \: or \:  \:  n = 3 \}}}

When n = 14

 \sf a = 63 - 7(14) \\  \\ \implies \  \large\bf \{ a =  - 35 \}

When n = 3

 \sf a = 63 - 7(3) \\  \\  \implies  \large\bf \{a = 42 \}

\huge\mathfrak{\text{S}o}\\\\\color{magenta}  \boxed{\boxed{\Large\bf \{a = 42 \:\: or\:\:a=-35\}}}

Answered by BrainlyTurtle
5

 S_n =  \frac{n}{2}  \{a + a_n \} \\  \\ 147 =  \frac{n}{2} (a + 56) \\  \\ n(a + 56)=294 ...(Eq^n1)

  a_n = a + (n - 1)d \\  \\ 56 = a + (n - 1)7 \\  \\  56 = a + 7n - 7  \\  \\  a = 63 -7n...(Eq^n2)

Put eq 2 in eq 1

We get

  n(63 - 7n + 56) =294\\  \\  n(119 - 7n) =294\\  \\   119n - 7 {n}^{2} =294 \\  \\ \sf 7 {n}^{2}  - 119n + 294 = 0 \\  \\ {n}^{2}  - 17n + 42= 0 \\  \\   {n}^{2}  - 14n - 3n + 42 = 0 \\  \\ (n - 14)(n - 3) = 0 \\  \\  \bf\implies[n = 14 \:  \: or \:  \:  n = 3 ]

If n = 14

 a = 63 - 7(14) \\  \\ \implies \  \large\bf a =  - 35

If n = 3

 a = 63 - 7(3) \\  \\  \implies  \large\bf a = 42

Similar questions