Math, asked by theparibartan, 1 month ago

in an AP if S20=S40, then what is the value of S60 ?​

Answers

Answered by MaheswariS
0

\textbf{Given:}

\textsf{In an A.P,}

\mathsf{S_{20}=S_{40}}

\textbf{To find:}

\textsf{The value of}

\mathsf{S_{60}}

\textbf{Solution:}

\underine{\textsf{Concept used:}}

\textsf{The sum of first n terms of the A.P a, a+d, a+2d}\;.\;.\;.\;.\;.

\mathsf{is\;S_n=\dfrac{n}{2}[2a+(n-1)d]}

\textsf{Consider,}

\mathsf{S_{20}=S_{40}}

\mathsf{\dfrac{20}{2}[2a+(20-1)d]=\dfrac{40}{2}[2a+(40-1)d]}

\mathsf{10[2a+19\,d]=20[2a+39\,d]}

\mathsf{2a+19\,d=2[2a+39\,d]}

\mathsf{2a+19\,d=4a+78\,d}

\implies\mathsf{2a+59\,d=0}

\implies\mathsf{\dfrac{60}{2}[2a+59\,d]=0}

\implies\mathsf{\dfrac{60}{2}[2a+(60-1)\,d]=0}

\implies\boxed{\mathsf{S_{60}=0}}

\textbf{Find more:}

in an ap if s3=24 and s4=30 then find a4 ...

please friends solve it fast it's urgent please friends ...​

https://brainly.in/question/18360783

Similar questions