Math, asked by 2004dayal, 11 months ago

In an AP if Sn = 3n^2 +5n and ak=164 find value of k.​

Attachments:

Answers

Answered by Yenreddy2003
17

Answer: 27

Step-by-step explanation:given Sn=3n^2 + 5n

S1 = 3(1)^2 + 5(1)

= 3+5 =8

S2 = 3(2)^2 + 5(2)

= 12 + 8

= 22

a1 = 8

a2 = 22-8

= 14

a = 8

d = 6

ak = 164

ak = a + (k-1)d

164 = 8 + (k-1)6

156 = (k-1)6

156/6 =k-1

26 = k-1

K = 27

Answered by Anonymous
4

{\green {\boxed {\mathtt {✓verified\:answer}}}}

in \: an \: ap \: given \: s _{n} = 3n {}^{2}  + 5n \:  \\ and \: a   _{k} = s _{k} - s _{k - 1} \\  \implies \:a  _{k } = (3k {}^{2}  + 5k) - (3(k - 1) ^{2}  + 5(k - 1)) \\  \implies  a_{k}  = (3k {}^{2}  + 5k) - (3k {}^{2}  - 6k + 3 + 5k - 5) \\  \implies \: a _{k} = 6k + 2 \\ according \: to \: given \:  \: a _{k} = 164  \:  \\  \implies6k + 2 = 164 \implies6k = 162 \implies \: k \:  = 27

Similar questions