Math, asked by Krunaldhalani1128, 11 months ago

In an ap if the pth term is 1/q and the qth term is 1/p prove that the sum of first pq terms is 1+pq/2 where p is not equal to q

Answers

Answered by mathsdude85
24

STEP-BY-STEP EXPLANATION :-

a + (p - 1)d =  \frac{1}{q}.....(i)  \\  \\ a + (q - 1)d =  \frac{1}{p} .......(ii) \\  \\  \\  \\ subtracting \: them \:  \\  \\  \\ a + (p - 1)d - a  -  (q - 1)d =  \frac{p - q}{pq}  \\  \\  \\ d(p - 1 - q + 1) = \frac{p - q}{pq} \\  \\ d(p - q) = \frac{p - q}{pq} \\  \\ d = \frac{1}{pq} \\  \\  \\ putting \: in \: (i) \\  \\ a + (p - 1) \frac{1}{pq}  =  \frac{1}{q}  \\  \\ a +  \frac{p}{pq}  -  \frac{1}{pq}  =  \frac{1}{q}  \\  \\ a +  \frac{1}{q}  -  \frac{1}{pq}  =  \frac{1}{q}  \\  \\ a =  \frac{1}{pq}

Now,

We have a as well as d.

So,

Sum of first pq terms will be :-

s =  \frac{pq}{2} (2a + (pq - 1)d) \\  \\  = \frac{pq}{2} (2 \times  \frac{1}{pq}  + (pq - 1) \frac{1}{pq} ) \\  \\  \\  = \frac{pq}{2} ( \frac{2 + pq - 1}{pq} ) \\  \\  \\  \frac{1}{2} (pq + 1)

Hence,

Proved!

Answered by silentlover45
3

 Given:-

  •  pth \: \: term = \: \frac{1}{q}

  •  qth \: \: term = \: \frac{1}{p}

 To \: Prove:-

  •  Sum \: \: of \: \: first \: \: pq \: \: terms \: \: is \: \: \frac{1}{2}(pq + 1)

 Solutions:-

 a_n = a + (n - 1)d

  •  pth \: \: term \: \: is \: \: \frac{1}{q}

 ⇢ a_p = a + (p - 1)d

 ⇢ a + (p - 1)d = \frac{1}{q}......(1).

  •  qth \: \: term \: \: is \: \: \frac{1}{p}

 ⇢ a_q = a + (q - 1)d

 ⇢ a + (q - 1)d = \frac{1}{p}......(2).

  •  Substracting \: \: Eq. \: \: (2). \: \: from \: \: (1).

 ⇢ a + (p - 1)d = \frac{1}{q}

 ⇢ a + (q - 1)d = \frac{1}{p}

 \: \: \: \: \: \: \: \: - \: \: \: \: \: \: \: \: - \: \: \: \: \: \: \: \: \: \: = - \: \: \: \: \: \: \: \: \: \: \: \: _____________________

⇢ (p - 1)d \: - \: (q - 1)d = \frac{1}{q} - \frac{1}{p}

⇢ pd - d \: - \: qd + d = \frac{p - q}{pq}

⇢ pd  \: - \: qd  = \frac{p - q}{pq}

⇢ (p  - q)d = \frac{p - q}{pq}

⇢ d = \frac{p - q}{pq} × \frac{1}{p - q}

⇢ d = \frac{1}{pq}

  •  putting \: \: value \: \: of \: \: d = \: \: \frac{1}{pq} \: \: in \: \: Eq. \: \: (1).

⇢ a + (p - 1)d = \frac{1}{q}

⇢ a + (p - 1) × \frac{1}{pq} = \frac{1}{q}

⇢ a + \frac{p}{pq} - \frac{1}{pq} = \frac{1}{q}

⇢ a + \frac{1}{q} - \frac{1}{pq} = \frac{1}{q}

⇢ a + \frac{1}{q} - \frac{1}{q} = \frac{1}{pq}

⇢ a = \frac{1}{pq}

  •  So, \: \: a \: \: = \: \: \frac{1}{pq} \: \: \: and \: \: \: d= \: \: \frac{1}{pq}

 S_n = \frac{n}{2}[2a × (n - 1)d]

  •  Sum \: \: of \: \: 1st \: \: pq \: \: terms:-

⇢ S_pq = \frac{pq}{2}[2 × \frac{1}{pq} × (pq - 1) × \frac{1}{pq}]

⇢ S_pq = \frac{pq}{2}[ \frac{2}{pq} + \frac{pq}{pq} + \frac{1}{pq}]

⇢ S_pq = \frac{pq}{2}[ \frac{2 + pq - 1}{pq}]

⇢ S_pq = \frac{pq}{2}[ \frac{1 + pq}{pq}]

⇢ S_pq = \frac{1}{2}[pq + 1]

 hence, \: \: \: proved \: \: that \: \: the \: \: sum \: \: of \: \: first \: \: pq \:  \: therms \: \: is \: \: = \: \: \frac{1}{2}(pq + 1), \: \: where \: \: p \: \: is \: \: not \: \: equal \: \: to \: \: q.

______________________________________

Similar questions