Math, asked by pargekaran22, 1 year ago

in an ap of 50 terms, the sum of first 10 erms is 210 and the sum of its last 15 terms is 2565. Find the A.P.

Answers

Answered by heshvitha
2

Answer:


Step-by-step explanation:

n=50

a₁₀=a+9d

a=-9d

s₁₀=10/2[a+a+9d]

    =5[2a+9d]

    =10a+45d=210

    =2a+9d=42 ...............(i)

a₃₆=a+35d

s₁₅₍from last₎=15/2[a+35d+a+49d]

                    =15/2[2a+84d]

                    =15a+630d=2565

                    =a+42d=171.......................(ii)

solving (i) and(ii)

2a+9d=42

a+42d=171

⇒d=4

a=39

∴ap=39,43,47,51,55,59,63............


   


pargekaran22: yup bro..... ty
heshvitha: u r welcome
Grimmjow: Hey Heshvita. .I think we get the First term(a) = 3
harshi733: how?
harshi733: ill check wait a while\
heshvitha: oh yeah its 3
heshvitha: i have made a mistake
heshvitha: but whole process is correct ,only the last final statement is wrong iam sorry
Grimmjow: ^_^ It's Okay. .Everyone makes Mistakes.
heshvitha: ty
Answered by Grimmjow
1

Let the A.P be : a , a + d , a + 2d. . . . . . .a + 35d. . . . . . .a + 49d

Given : The Sum of First 10 Terms of the A.P is 210

\mathsf{We\;know\;that,\;Sum\;of\;(n)\;terms\;in\;an\;A.P\;is\;given\;by :}

\mathsf{\implies S_n = \frac{n}{2}[2a + (n - 1)d]}

\mathsf{\implies Sum\;of\;First\;10\;terms\;(S_1_0) = \frac{10}{2}[2a + (10 - 1)d]}

\mathsf{\implies 5[2a + 9d] = 210}

\mathsf{\implies [2a + 9d] = 42\;----------\;(1)}

Given : The Sum of Last 15 terms of the A.P is 2565

We need to Realize that : In the Series of Last 15 Terms, The First Term will be 36th term which can be written as (a + 35d) and The Common Difference Remains the Same.

\mathsf{\implies Sum\;of\;the\;Last\;15\;terms\;(S_1_5_L) = \frac{15}{2}[2(a + 35d) + (15 - 1)d]}

\mathsf{\implies \frac{15}{2}[2(a + 35d) + 14d] = 2565}

\mathsf{\implies \frac{1}{2}[2(a + 35d) + 14d] = 171}

\mathsf{\implies [2(a + 35d) + 14d] = 342}

\mathsf{\implies [2a + 84d] = 342\;----------\;(2)}

Subtracting Equation (1) from Equation (2), We get :

⇒ [2a + 84d] - [2a + 9d] = 342 - 42

⇒ 75d = 300

⇒ d = 4

Substituting d = 4 in Equation (1), We get :

⇒ 2a + 9(4) = 42

⇒ 2a + 36 = 42

⇒ 2a = 6

⇒ a = 3

Hence, The Given Arithmetic Progression is :

✿  3 , 7 , 11 , 15. . . . . . . . . .143. . . . . . . . . .199

Similar questions