in an ap of 50 terms, the sum of first 10 erms is 210 and the sum of its last 15 terms is 2565. Find the A.P.
Answers
Answer:
Step-by-step explanation:
n=50
a₁₀=a+9d
a=-9d
s₁₀=10/2[a+a+9d]
=5[2a+9d]
=10a+45d=210
=2a+9d=42 ...............(i)
a₃₆=a+35d
s₁₅₍from last₎=15/2[a+35d+a+49d]
=15/2[2a+84d]
=15a+630d=2565
=a+42d=171.......................(ii)
solving (i) and(ii)
2a+9d=42
a+42d=171
⇒d=4
a=39
∴ap=39,43,47,51,55,59,63............
Let the A.P be : a , a + d , a + 2d. . . . . . .a + 35d. . . . . . .a + 49d
Given : The Sum of First 10 Terms of the A.P is 210
Given : The Sum of Last 15 terms of the A.P is 2565
We need to Realize that : In the Series of Last 15 Terms, The First Term will be 36th term which can be written as (a + 35d) and The Common Difference Remains the Same.
Subtracting Equation (1) from Equation (2), We get :
⇒ [2a + 84d] - [2a + 9d] = 342 - 42
⇒ 75d = 300
⇒ d = 4
Substituting d = 4 in Equation (1), We get :
⇒ 2a + 9(4) = 42
⇒ 2a + 36 = 42
⇒ 2a = 6
⇒ a = 3
Hence, The Given Arithmetic Progression is :
✿ 3 , 7 , 11 , 15. . . . . . . . . .143. . . . . . . . . .199