Math, asked by karthikeyapotluri197, 11 months ago

In an AP of 50 terms, the sum of first 10 terms is 210 and the sum of its last 15 terms is 2565. Find the AP.

Answers

Answered by arnavcube123456789
9

Answer:

Let a be the first term and d be the common difference of the given AP.

Sum of the first n terms is given by

Sn = n/2 {2a + (n - 1)d}

Putting n = 10, we get

S₁₀ = 10/2 {2a + (10 - 1)d}

210 = 5 (2a + 9d) 

2a + 9d = 210/5

2a + 9d = 42 ...............(1)

Sum of the last 15 terms is 2565

⇒ Sum of the first 50 terms - sum of the first 35 terms = 2565

S₅₀ - S₃₅ = 2565

⇒ 50/2 {2a + (50 - 1)d} - 35/2 {2a + (35 - 1)d} = 2565

25 (2a + 49d) - 35/2 (2a + 34d) = 2565

⇒ 5 (2a + 49d) - 7/2 (2a + 34d) = 513

⇒ 10a + 245d - 7a + 119d = 513

⇒ 3a + 126d = 513 

⇒ a + 42d = 171 ........(2)

Multiply the equation (2) with 2, we get

2a + 84d = 342 .........(3)

Subtracting (1) from (3)

  2a + 84d = 342

  2a + 9d   =  42

-      -         -

_______________

        75d = 300

_______________

 d= 4

Now, substituting the value of d in equation (1)

2a + 9d = 42

2a + 9*4 = 42

2a = 42 - 36

2a = 6

a = 3

So, the required AP is 3, 7, 11, 15, 19, 23, 27, 31, 35, 39 ........

Plz mark as brainliest

Hope it helps

A thanks will be appreciated

Answered by rekhakhandelwal247
1

Step-by-step explanation:

Consider a and d as the first term and the common difference of an A.P. respectively.

n th term of an A.P., an = a + ( n – 1)d

Sum of n terms of an A.P., S n = n/ 2 [2a + (n – 1)d]

Given that the sum of the first 10 terms is 210.

⇒ 10 / 2 [2a + 9d ] = 210

⇒ 5[ 2a + 9 d ] = 210

⇒2a + 9d = 42 ----------- (1)

15 th term from the last = ( 50 – 15 + 1 ) th = 36 th term from the beginning

⇒ a36 = a + 35d

Sum of the last 15 terms = 15/2 [2a36 + ( 15 – 1)d ] = 2565

⇒ 15 / 2 [ 2(a + 35d) + 14d ] = 2565

⇒ 15 [ a + 35d + 7d ] = 2565

⇒a + 42d = 171 ----------(2)

From (1) and (2), we have d = 4 and a = 3.

Therefore, the terms in A.P. are 3, 7, 11, 15 . . . and 199.

Similar questions