Math, asked by jaivardhanrock, 8 months ago

in an ap, the first term is 25 nth term is -17 and sum to first n terms is 60 find the common difference

Answers

Answered by SarcasticL0ve
4

\sf Given \begin{cases} &amp; \sf{First\;term,\;a = 25 }  \\ &amp; \sf{n^{th}\;term,\; a_n = -17} \\ &amp; \sf{Sum\;of\;first\;n\;terms,\;S_n = 60 }  </p><p>\end{cases}

We have to find Common Difference, d?

━━━━━━━━━━━━━━━━━━━━━━━━━━━

We know that,

\star\;{\boxed{\sf{\purple{a_n = a + (n - 1)d}}}}\\ \\

:\implies\sf - 17 = 25 + (n - 1)d\\ \\

:\implies\sf (n - 1)d = - 42\qquad\qquad\bigg\lgroup\bf eq\;(1) \bigg\rgroup\\ \\

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━━━━━━━━━━

Now,

\star\;{\boxed{\sf{\purple{S_n = \dfrac{n}{2} \bigg( a + a_n \bigg)}}}}\\ \\

\qquad\qquad:\implies\sf 60 = \dfrac{n}{2} \bigg( 25 + ( - 17) \bigg)\\ \\

\qquad\qquad\quad:\implies\sf 60 \times 2 = 8n\\ \\

\qquad\qquad\quad:\implies\sf n = \cancel{ \dfrac{120}{8}}\\ \\

\qquad\qquad\quad:\implies{\boxed{\frak{\pink{n = 15}}}}\;\bigstar\\ \\

\therefore There are 15 number of terms in given AP.

⠀⠀⠀ ━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀ ⠀⠀✇ Now, Putting value of n in eq (1),

\qquad\qquad\qquad:\implies\sf (15 - 1)d = - 42\\ \\

\qquad\qquad\qquad\quad:\implies\sf 14d = - 42\\ \\

\qquad\qquad\qquad\quad:\implies\sf d = - \cancel{ \dfrac{42}{14}}\\ \\

\qquad\qquad\qquad\quad:\implies{\boxed{\frak{\pink{d = - 3}}}}\;\bigstar\\ \\

\therefore Hence, Common Difference (d) between terms of AP is -3.

Answered by sejalbhalerao376
0

Answer:

sorry don't know nice dp hmm

Similar questions