Math, asked by navdeepkaur240306, 4 months ago

in an arithmetic progression , if a = -18.9 , d= 2.5 , An = 3.6 then find n ...​

Answers

Answered by monikasaxena12
1

Answer:

n = 10

Step-by-step explanation:

We know, An= a + (n-1)d

by this,

3.6 = -18.9 + (n-1)2.5

3.6 + 18.9 = (n-1)2.5

22.5= (n-1)2.5

22.5÷2.5 = n-1

9= n-1

9+1= n

10 = n

Answered by ILLUSTRIOUS27
1

Given

  • in an arithmetic progression , if a = -18.9 , d= 2.5 , An = 3.6

To Find

  • Value of n

SOLUTION

We have an ap in which

  • a=-18.9
  • d=2.5
  •   \rm \: a_{n} = 3.6

We have an Formula to find an that is

 \rm \:  a_{n} = a + (n - 1)d \\  \\  \bf \: putting \: values \\  \\ \rm 3.6 =  - 18.9 + (n - 1)2.5 \\  \\  \implies \rm 3.6 + 18.9 = (n - 1)2.5  \\  \\  \rm \implies \: 22.5 = (n - 1)2.5 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\  \implies \rm \:  \frac{22.5}{2.5}  = n - 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \\  \\  \implies \rm \: 9 = n - 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \implies  \underline{\huge{ \boxed{ \bf \: n = 10}} }\:  \:

Hence the value of n is 10

Verification

 \rm  a_{n} = a + (n - 1)d \\  \\  \implies \rm \: RHS =  - 18.9 + (10 - 1)  \times 2.5 \\  \\  \implies \rm \: RHS = 22.5 - 18.9 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \underline{ \boxed{ \huge{ \bf \: RHS = 3.6 =LHS }}} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf hence \: proved

By the way of verification it is clear that answer was right you can check it whenever you are in confusion this is bestest way to do this question

Similar questions