in an arithmetic progression of 50, terms the sum of first 10 terms is 210 and the sum of last 15 terms is 2565 find the arithmetic progression
Answers
Answered by
4
hope it will help you mate
Attachments:
anjali962:
ok
Answered by
11
hey......
.
Sum of the first n term given by
Sn = n / 2 [ 2a + ( n - 1 ) d
putting n = 10 , we get
S10 = 10 / 2 [ 2a + ( 10 - 1 ) d ]
210 = 5 ( 2a + 9d )
2a + 9d = 42 ..................( 1 )
sum of the last 15 term is 2565
sum of the first 50 term - sum of the first 35 term = 2565
S50 - S35 = 2565
50 / 2 [ 2a + ( 50 - 1 ) d ] - 35 / 2 [ 2a + ( 35 - 1 )d ] = 2565
25 ( 2a + 49d ) - 35 / 2 [ 2a + 34d ] = 2565
2 ( 2a + 49d ) - 7 / 2 ( 2a + 34d ) = 513
10a + 245d - 7a + 119d = 513
3a + 126d = 513
a + 42d = 171................ ( 2 )
Multiply the equation ( 2 ) with 2 , we get
2a + 84d = 342.............. ( 3 )
Subtracting ( 1 ) from ( 3 )
d = 4
Now , substituting the value of d in equation ( 1 )
2a + 9d = 42
2a + 9 × 4 = 42
2a = 42 - 36
2a = 6
a = 3
So , the required A.P is
3 , 7 , 11 , 15 , 19 , 23 , 27 , 31 , 35 , 39 , ...........
.
.
.
i hope this helps u.
.
.
mark me brainliest plz plz plz plz
.
Sum of the first n term given by
Sn = n / 2 [ 2a + ( n - 1 ) d
putting n = 10 , we get
S10 = 10 / 2 [ 2a + ( 10 - 1 ) d ]
210 = 5 ( 2a + 9d )
2a + 9d = 42 ..................( 1 )
sum of the last 15 term is 2565
sum of the first 50 term - sum of the first 35 term = 2565
S50 - S35 = 2565
50 / 2 [ 2a + ( 50 - 1 ) d ] - 35 / 2 [ 2a + ( 35 - 1 )d ] = 2565
25 ( 2a + 49d ) - 35 / 2 [ 2a + 34d ] = 2565
2 ( 2a + 49d ) - 7 / 2 ( 2a + 34d ) = 513
10a + 245d - 7a + 119d = 513
3a + 126d = 513
a + 42d = 171................ ( 2 )
Multiply the equation ( 2 ) with 2 , we get
2a + 84d = 342.............. ( 3 )
Subtracting ( 1 ) from ( 3 )
d = 4
Now , substituting the value of d in equation ( 1 )
2a + 9d = 42
2a + 9 × 4 = 42
2a = 42 - 36
2a = 6
a = 3
So , the required A.P is
3 , 7 , 11 , 15 , 19 , 23 , 27 , 31 , 35 , 39 , ...........
.
.
.
i hope this helps u.
.
.
mark me brainliest plz plz plz plz
Similar questions