Math, asked by lovingd, 10 months ago

In an Arithmetic Progression the 8th term plus the 4th term equals the 13th term. If the 18th term is 76 what is the sum of the first 20 terms.?

Answers

Answered by jaswanthtalada728
4

Step-by-step explanation:

see step by step solutions

all in the sheet

Attachments:
Answered by mddilshad11ab
46

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{Let:}}}}

In AP ,The first term=a

The common difference=d

\large{\underline{\orange{\rm{Formula\: used:}}}}

  • \small{\boxed{\red{\rm{T_n=a+(n-1)d}}}}

  • \small{\boxed{\green{\rm{S_n=\frac{n}{2}[{2a+(n-1)d]}}}}}

\large{\underline{\purple{\rm{Given:}}}}

  • In an Arithmetic Progression the 8th term plus the 4th term equals the 13th term. If the 18th term is 76

\small{\underline{\purple{\rm{As\:per\:the\:above\: information:}}}}

\sf{\longrightarrow 8th\:term+4th\: term=13th\: term}

\sf{\longrightarrow a+7d+a+3d=a+12d}

\sf{\longrightarrow 2a+10d=a+12d}

\sf{\longrightarrow 2a-a+10d-12d=0}

\sf\pink{\longrightarrow a-2d=0-----(1)}

\sf{\longrightarrow 18th\:term=76}

\sf{\longrightarrow a+17d=76}

\sf\pink{\longrightarrow a+17d=76-----(2)}

  • Now, Solving equation 1 and 2

\sf{\longrightarrow a-2d=0}

\sf{\longrightarrow a+17d=76}

  • After solving we get,here

\sf{\longrightarrow -19d=-76}

\sf{\longrightarrow 19d=76}

\sf\green{\longrightarrow d=4}

  • putting the value of d=4 in EQ 1

\sf{\longrightarrow a-2d=0}

\sf{\longrightarrow a-2*4=0}

\sf\green{\longrightarrow a=8}

  • Now,The sum of 20th term of AP

\sf{\longrightarrow S_2_0=\frac{20}{2}[2*8+(20-1)4]}

\sf{\longrightarrow S_2_0=\frac{20}{2}[16+76]}

\sf{\longrightarrow S_2_0=\frac{20}{2}*92}

\sf{\longrightarrow S_2_0=10*92}

\sf\green{\longrightarrow S_2_0=920}

Hence,

\small{\underline{\purple{\rm{The\:sum\:of\:1st\:20th\: term=920}}}}

Similar questions