Math, asked by Anonymous, 9 months ago

in an arithmetic sequence, t_{m} =n and t_{n} =m. Show t_{m+n} =0

Answers

Answered by Rohith200422
7

Question:

In an arithmetic sequence, t_{m} =n and t_{n} =m. Show t_{m+n} =0

To show:

 \bigstar \: t _{m + n} = 0

Answer:

\underline{\sf \pink{t _{m + n} = 0}} \: is \: proved.

Given:

★ The given consecutive terms are in A.P.

 \star \: t _{m} = n

 \star \: t _{n} = m

Step-by-step explanation:

We know that,

 \boxed{t _{n} = a + (n - 1)d}

 \implies t _{m} = n

 \implies \underline{ \:  t _{m}  = a + (m - 1)d = n \: }

 \longrightarrow t _{n} = m

\longrightarrow  \underline{ \: t _{n} = a + (n - 1)d = m \: }

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Now to find the value of d ( Common difference )

Subtracting,

\hookrightarrow a + (m - 1)d - \big[a + (n - 1)d\big] = n - m

\hookrightarrow  \not{a} + (m - 1)d  - \not{a} - (n - 1)d= n - m

\hookrightarrow (m - \not{1} - n  +\not{ 1}) d= n  - m

\hookrightarrow d =  \frac{n - m}{ m - n}

\hookrightarrow  \boxed{d =  - 1}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Now substituting the value of d,

\mapsto t _{m} = a + (m - 1)( - 1)

\mapsto a - m + 1 = n

\mapsto  \boxed{a = m + n - 1}

\mapsto t _{n} = a + (n - 1)( - 1)

\mapsto a - n + 1 = m

\mapsto  \boxed{a = m + n - 1}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Now, \: t _{m + n}

\hookrightarrow t _{m + n} = t _{m} + t _{n}

\hookrightarrow t _{m + n} = a + m - 1 +  - 1(a + m - 1)

\hookrightarrow t _{m + n} = a + m - 1  - a -  m  + 1)

\hookrightarrow  \boxed{t _{m + n} = 0}

\therefore  \bold{t _{m + n} = 0}

Hence \: proved.

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

More information:

Arithmetic progression :

In a sequence the difference between two consecutive terms are equal it is called Arithmetic progression .

General form :

a , a + d , a + 2d , a +3d ,........

 \bigstar  \underline{ \bold{{n}^{th} term}}

t _{n} = a + (n - 1)d

No. of terms :

n =  \frac{l - a}{d}   + 1

Common difference :

d = t_{2} - t _{1}

Sum of n terms of an A.P. :

S_{n}=\frac{n}{2}[2a+(n-1)d]

Similar questions