Physics, asked by harshgangwar268, 8 months ago

In an ballistics demonstration a police officer fires a bullet of mass 50.0g with speed 200m/s on soft plywood of thickness 2.00cm.the bullet emerges with only 10% of its initial kinetic energy. what is the emergent speed of the bullet?​

Answers

Answered by ghazala18
1

Answer:

Hello mate,

Explanation:

Here, m=50.0g

=50/1000kg=1/20kg

vi=200ms−1

∴ Initial K.E., Ki=1/2mv²i

=1/2×1/20(200)²=1000J

Final K.E., Kf=10%(Ki)

=10/100×1000J=100J

If vf is emergent speed of the bullet, then

1/2mv²f=Kf

vf=√2Kf/m−−−−√=2×100/1/20−−−−−−−√=63.2m/s

Note that K.E. is reduced by 90% but speed is reduced by nearly 68%.

hope this helps u

Answered by nandanaMK
6

 \large \underline{ \tt{Given : }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{m = 50 g} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{u = 200 m/s} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \tt{ v =   \: ?}

 \tt{final \:  \: k.e =  \frac{1}{2}  \: m {v}^{2} }

 \tt{initial \:  \:  \: k.e \: \:  \:  =  \:  \frac{1}{2}  \: m {u}^{2}  }

 \tt{ =  \frac{1}{2} ( \frac{50}{1000} ) \times  ({200})^{2} }

 \tt{ =  \frac{50}{2000}  \times 40000}

 \tt{ = 1000 \:  \: joules}

 \tt{final \:  \: k.e = 10\% \:  \: of \:  \: initial \:  \: k.e}

 \tt{final \:  \: k.e =  \frac{10}{100}  \times (1000)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ = 100 \:  \: joules}

 \tt{ \frac{1}{2}  \: m {v}^{2}  = 100}

 \tt{ \frac{1}{2} ( \frac{50}{1000} ) {v}^{2}  = 100}

 \tt{ \frac{50}{2000} {v}^{2} = 100  }

 \tt{50 {v}^{2} = 100 \times 2000 }

\tt{50 {v}^{2}  = 200000}

\tt{ {v}^{2}  =  \frac{200000}{50} }

\tt{ {v}^{2} =  \frac{20000}{5}  }

\tt{ {v}^{2}  = 4000}

\tt{v =  \sqrt{4000} }

 \large \boxed{\tt{v = 63.2 \: m/s }}

 \\  \\  \\  \\  \red{ \bf{Hope \:   \: this \:   \: helps  \: \:  you \: !}}

Similar questions
Math, 4 months ago