Math, asked by Aashish05, 1 year ago

In an equilateral triangle ABC, D is a point on side BC such that BD=1/3BC. Prove that 9AD²=7AB².

Answers

Answered by Millii
16
Given:   In an equilateral triangle ΔABC. The side BC is trisected at D such that BD = (1/3) BC.

To prove:  9AD2  = 7AB2 

Construction:  Draw AE ⊥ BC.

Proof :

In a ΔABC and ΔACE

AB = AC ( Given)

AE = AE ( common)

∠AEB = ∠AEC = 90°

∴ ΔABC ≅ ΔACE ( For RHS criterion)

BE = EC (By C.P.C.T)

BE = EC = BC / 2

In a right angled triangle ADE

AD2 = AE2 + DE2 ---------(1)

In a right angled triangle ABE

AB2 = AE2 + BE2 ---------(2)

From equ (1) and (2) we obtain

⇒ AD2  - AB2 =  DE2 - BE2 .

⇒ AD2  - AB2 = (BE – BD)2 - BE2 .

⇒ AD2  - AB2 = (BC / 2 – BC/3)2 – (BC/2)2 

⇒ AD2  - AB2 = ((3BC – 2BC)/6)2 – (BC/2)2 

⇒ AD2  - AB2 = BC2 / 36 – BC2 / 4 ( In a equilateral triangle ΔABC, AB = BC = CA)

⇒ AD2 = AB2 + AB2 / 36 – AB2 / 4

⇒ AD2 = (36AB2 + AB2– 9AB2) / 36

⇒ AD2 = (28AB2) / 36

⇒ AD2 = (7AB2) / 9

9AD2 = 7AB2 .
Attachments:
Answered by Anonymous
16

Given: ΔABC is an equilateral triangle. D is point on BC such that BD =BC.


To prove: 9 AD² = 7 AB²


Construction: Draw AE ⊥ BC.


Proof ;-


Considering on Triangles which are given below;-


In a ΔABC and ΔACE


AB = AC ( given)


AE = AE (common)


∠AEB = ∠AEC = (Right angle)


∴ ΔABC ≅ ΔACE


By RHS Creation


∴ ΔABC ≅ ΔACE


Considering On Question;-


Again,


BE = EC (By C.P.C.T)


BE = EC = BC²


In a right angled ΔADE


AD²= AE2 + DE² ---(1)


In a right angled ΔABE


AB² = AE² + BE² ---(2)


From equation (1) and (2) ;


 =) AD²  - AB² =  DE² - BE².


 =) AD²  - AB² = (BE – BD)² - BE².


 = ) AD²  - AB² = (BC / 2 – BC/3)² – (BC/2)²


 = AD2  - AB2 = ((3BC – 2BC/6)² – (BC/2)² 


 = AD²  - AB² = (BC² / 36 – BC2 / 4 )


( In a equilateral triangle, All sides are equal to each other)


AB = BC = AC


 = ) AD²= AB² + AB²/ 36 – AB² / 4


 = )AD² = (36AB² + AB²– 9AB²) / 36


 = ) AD² = (28AB²) / 36


=) AD² = (7AB²) / 9


Cross Multiplication here,


= ) 9AD² = 7AB² ‎‎‎‎‎‎‎‎‎‎‎‎‎

‎Hence, 9AD² = 7AB² ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎

‎Its proved!!!

Similar questions