Math, asked by sabudpallana, 1 year ago

In an equilateral triangle ABC, D is a point on the side BC such that 1 BD BC. 3  Prove that 9AD2 = 7AB2

Answers

Answered by ajmal64
11





please mark it as brainliest
Attachments:
Answered by SmãrtyMohït
13

Here is your solution


Given:-


ABC is an equilateral triangle.


D is point on BC .


so BD =BC.


To prove:-


 9 AD² = 7 AB²


Construction: Draw AE ⊥ BC.


Proof ;-


Considering on Triangles which are given below;-


In a ΔABC and ΔACE


AB = AC ( given)


AE = AE (common)


∠AEB = ∠AEC = (Right angle)


∴ ΔABC ≅ ΔACE 


By RHS Creation


∴ ΔABC ≅ ΔACE 


Again,


BE = EC (By C.P.C.T)


BE = EC = BC²


In a right angled ΔADE


AD²= AE2 + DE² ---(1)


In a right angled ΔABE


AB² = AE² + BE² ---(2)


From equation (1) and (2) ;


 =) AD²  - AB² =  DE² - BE².


 =) AD²  - AB² = (BE – BD)² - BE².


 = ) AD²  - AB² = (BC / 2 – BC/3)² – (BC/2)²


 = AD2  - AB2 = ((3BC – 2BC/6)² – (BC/2)² 


 = AD²  - AB² = (BC² / 36 – BC2 / 4 )


( In a equilateral triangle, All sides are equal to each other)


AB = BC = AC


 = ) AD²= AB² + AB²/ 36 – AB² / 4


 = )AD² = (36AB² + AB²– 9AB²) / 36


 = ) AD² = (28AB²) / 36


=) AD² = (7AB²) / 9


Cross Multiplication here,


= ) 9AD² = 7AB² ‎‎‎‎‎‎‎‎‎‎‎‎‎

‎Hence,


9AD² = 7AB² ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎proved


Hope it helps you

Similar questions