Math, asked by mohdtalib9260, 1 year ago

In an equilateral triangle ABC there is a point D on BC such that BD= 1/3 BC. prove that 9AB^2=7AD^2

Answers

Answered by nitthesh7
12
Given:   In an equilateral triangle ΔABC. The side BC is trisected at D such

that BD = (1/3) BC.

To prove:  9AD²  = 7AB² 

Construction:  Draw AE ⊥ BC.

Proof :

In a ΔABC and ΔACE

AB = AC ( Given)

AE = AE ( common)

∠AEB = ∠AEC = 90°

∴ ΔABC ≅ ΔACE ( For RHS criterion)

BE = EC (By C.P.C.T)

BE = EC = BC / 2

In a right angled triangle ADE

AD² = AE² + DE² ---------(1)

In a right angled triangle ABE

AB² = AE² + BE² ---------(2)

From equations (1) and (2), we obtain

⇒ AD²  - AB² =  DE² - BE²

⇒ AD²  - AB² = (BE – BD)² - BE² 

⇒ AD²  - AB² = (BC / 2 – BC/3)² – (BC/2)² 

⇒ AD²  - AB² = ((3BC – 2BC)/6)² – (BC/2)² 

⇒ AD²  - AB² = BC² / 36 – BC² / 4

( In a equilateral triangle ΔABC, AB = BC = CA)

⇒ AD² = AB² + AB² / 36 – AB² / 4

⇒ AD² = (36AB² + AB²– 9AB²) / 36

⇒ AD² = (28AB²) / 36

⇒ AD² = (7AB²) / 9

⇒ 9AD² = 7AB² .
_________________________________________________________

☺☺☺ Hope this Helps ☺☺☺
Attachments:

nitthesh7: if u find it as most helpful pls mark it as brainliest
Answered by Khushi0511
8
Hii There !!
Here is ur answer..

Hope it Helps..
Mark as Brainliest plzz
Attachments:

nitthesh7: Nice answer sis
nitthesh7: Hm... : )
Similar questions