Math, asked by akshatha18, 17 days ago

In an equilateral triangle PQR, PT is an altitude. Then the value of 4PT² is:
(a) 3PQ ² (b) PQ² (c) (PQ + QR)² (d) 2PQ²​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\textsf{In equilateral triangle PQR, PT is an altitude}

\underline{\textbf{To find:}}

\textsf{The value of}\;\mathsf{4\,PT^2}

\underline{\textbf{Solution:}}

\underline{\textbf{Formula used:}}

\textsf{Altitude of equilateral triangle having side a is}

\mathsf{\dfrac{\sqrt3}{2}\,a}

\mathsf{Here,}

\mathsf{Altitude,\;PT=\dfrac{\sqrt3}{2}\,a}

\implies\mathsf{PT=\dfrac{\sqrt3}{2}\,PQ}

\textsf{Squaring on bothsides, we get}

\mathsf{PT^2=\left(\dfrac{\sqrt3}{2}\right)^2PQ^2}

\mathsf{PT^2=\dfrac{3}{4}PQ^2}

\implies\boxed{\mathsf{4\;PT^2=3\;PQ^2}}

\underline{\textbf{Answer:}}

\mathsf{Option\;(a)\;is\;correct}

Similar questions