Physics, asked by LovelyGargi, 1 year ago

In an experiment measurements of velocity of a object are 342,338,318,322.The mean absolute error in the measurements is?

Answers

Answered by boffeemadrid
4

The measurements of velocity of a object are 342,338,318,322.

Mean of the measurements of velocity of a object are:

Mean=\frac{Sum of observations}{Total number of observations}

\overline{x}=\frac{342+338+318+322}{4}=\frac{1320}{4}=330

Now, |{\Delta}x_{1}|=\overline{x}-x_{1}=|330-342|=12

|{\Delta}x_{2}|=\overline{x}-x_{2}=|330-338|=8

|{\Delta}x_{3}|=\overline{x}-x_{3}=|330-318|=12 and

|{\Delta}x_{4}|=\overline{x}-x_{4}=|330-322|=8

Thus, \overline{\Delta x}=\frac{{\Delta}x_{1}+{\Delta}x_{2}+{\Delta}x_{3}+{\Delta}x_{4}}{4}=\frac{12+8+12+8}{4}=10.

therefore, The mean absolute error in the measurements is 10.

Answered by abhi178
2
measurements of velocity of an object are 342, 338, 318 , 322.

first of all, find mean !

mean = sum of observations/total number of observations

= (342 + 338 + 318 + 322)/4 = 330.

so, \overline{x}=330

so, |\Delta{x_1}|=\overline{x}-x_1=|330-342|=12

|\Delta{x_2}|=\overline{x}-x_2=|330-338|=8

|\Delta{x_1}|=\overline{x}-x_1=|330-318|=12

|\Delta{x_1}|=\overline{x}-x_1=|330-322|=8

so,\overline{\Delta{x}}=\frac{12+8+12+8}{4}=10
Similar questions