Math, asked by Siyakashyap8800, 1 year ago

In an isosceles triangle ABC ,AB‌=BC,angle B=20 . M and N are on AB and BC respectively such that angle MCA =60, angleNAC =50.find angle MNC

Answers

Answered by prettystefina11
7

Answer:

∡MNC = 100^{o}

Step-by-step explanation:

Given;

(i) ABC is an Isosceles Triangle.

(ii) ∡B = 20^{o}  

(iii) AB = BC, which means AC is the base of the triangle and AB and BC are the legs; as shown in the figure at the attachment.

Also, ∡A = ∡C (apex angles are equal)

And, ∡A + ∡B + ∡C = 180^{o} (Sum of angles in  Triangle are equal)

    => ∡A + ∡C = 180^{o} - 20^{o}

    => ∡A + ∡C = 160^{o}

    => ∡A = ∡C = 80^{o}

Also given;

(i) ∡MCA = 60^{o}, ∡NAC = 50^{o}

   Now,

   ∡BAC = ∡BAN + ∡NAC

   80^{o} = ∡BAN + 50^{o}

  => ∡BAN = 30

   ∡BCA = ∡BCM + ∡MCA

   80^{o} = ∡BCM + 60^{o}

  => ∡BCM = 20^{o}

Also;

MN // to AC

So,

∡BMN = ∡BAC & ∡BNM = ∡BCA (Corresponding Angles)

∡BMN = 80^{o}, ∡BNM = 80^{o}

Now;

Consider Triangle ∡ANC,

∡NAC + ∡ACN + ∡CNA = 180^{o} (Sum of angles in a Triangle = 180^{o})

=> 50^{o} + 80^{o} + ∡CNA = 180^{o}

=> ∡CNA = 50^{o}

Also,

∡BNM + ∡MNA + ∡NAC = 180^{o} (BC is a straight line)

=> 80^{o} + ∡MNA + 50^{o} = 180^{o}

=> ∡MNA = 50^{o}

And,

∡MNC = ∡MNA + ∡ANC

   = 50^{o} + 50^{o}

   = 100^{o}

Attachments:
Answered by shashipreethambade
1

Step-by-step explanation:

Answer:

∡MNC = 100^{o}100o

Step-by-step explanation:

Given;

(i) ABC is an Isosceles Triangle.

(ii) ∡B = 20^{o}20o  

(iii) AB = BC, which means AC is the base of the triangle and AB and BC are the legs; as shown in the figure at the attachment.

Also, ∡A = ∡C (apex angles are equal)

And, ∡A + ∡B + ∡C = 180^{o}180o (Sum of angles in  Triangle are equal)

    => ∡A + ∡C = 180^{o}180o - 20^{o}20o

    => ∡A + ∡C = 160^{o}160o

    => ∡A = ∡C = 80^{o}80o

Also given;

(i) ∡MCA = 60^{o}60o , ∡NAC = 50^{o}50o

   Now,

   ∡BAC = ∡BAN + ∡NAC

   80^{o}80o = ∡BAN + 50^{o}50o

  => ∡BAN = 30

   ∡BCA = ∡BCM + ∡MCA

   80^{o}80o = ∡BCM + 60^{o}60o

  => ∡BCM = 20^{o}20o

Also;

MN // to AC

So,

∡BMN = ∡BAC & ∡BNM = ∡BCA (Corresponding Angles)

∡BMN = 80^{o}80o , ∡BNM = 80^{o}80o

Now;

Consider Triangle ∡ANC,

∡NAC + ∡ACN + ∡CNA = 180^{o}180o (Sum of angles in a Triangle = 180^{o}180o )

=> 50^{o}50o + 80^{o}80o + ∡CNA = 180^{o}180o

=> ∡CNA = 50^{o}50o

Also,

∡BNM + ∡MNA + ∡NAC = 180^{o}180o (BC is a straight line)

=> 80^{o}80o + ∡MNA + 50^{o}50o = 180^{o}180o

=> ∡MNA = 50^{o}50o

And,

∡MNC = ∡MNA + ∡ANC

   = 50^{o}50o + 50^{o}50o

   = 100^{o}100o

Similar questions