Math, asked by siddhi369, 1 year ago

In an isosceles triangle ABC with AB = AC , the bisectors of angle B and angle C intersect at O. Join A to O. Show that : a) OB= OC and b) AO bisects angle A​

Answers

Answered by prathampatel204
3

Step-by-step explanation:

Follow the above attachment given

Mark it as a brainlist anwer

Follow me

Bie

Attachments:
Answered by CommanderBrainly
7

Step-by-step explanation:

\huge\color{Red}{\colorbox{black}{XxItzAdarshxX }}

Solution:-

Given:-

AB = AC and

the bisectors of B and C intersect each other at O

(i) Since ABC is an isosceles with AB = AC,

B = C

½ B = ½ C

⇒ OBC = OCB (Angle bisectors)

∴ OB = OC (Side opposite to the equal angles are equal.)

(ii) In ΔAOB and ΔAOC,

AB = AC (Given in the question)

AO = AO (Common arm)

OB = OC (As Proved Already)

So, ΔAOB ΔAOC by SSS congruence condition.

BAO = CAO (by CPCT)

Thus, AO bisects A.

\large\bf{\underline\green{❥thαnk \; чσu ♥♥}}

Similar questions